Sampled-data control of fuzzy systems based on the intelligent digital redesign method via an improved fuzzy Lyapunov functional approach

Sampled-data control of fuzzy systems based on the intelligent digital redesign method via an improved fuzzy Lyapunov functional approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a linear matrix inequality (LMI) approach to the sampled-data control of Takagi–Sugeno fuzzy systems, based on the intelligent digital redesign (IDR) technique. The objective of the IDR is to design a digital control system whose trajectory closely matches that of a given well-constructed analogue control system by minimising the state-matching error. In this study, state-matching performance is enhanced by using a continuous-time state-matching criterion, which guarantees that the state-matching error is minimised through the entire time interval. Unlike previous studies, mismatched information of membership functions for both analogue and digital control systems is directly manipulated. Moreover, the authors introduce an improved fuzzy Lyapunov functional that consists of both membership functions for analogue and digital control systems, which relaxes the conservativeness of LMI conditions. Finally, two examples demonstrating the effectiveness of the authors' method are provided.


    1. 1)
      • 1. Lee, H.J., Kim, H., Joo, Y.H., et al: ‘A new intelligent digital redesign for T–S fuzzy systems: global approach’, IEEE Trans. Fuzzy Syst., 2004, 12, (2), pp. 274284.
    2. 2)
      • 2. Lee, H.J., Park, J.B., Joo, Y.H.: ‘Further refinement on LMI-based digital redesign: delta-operator approach’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (6), pp. 473477.
    3. 3)
      • 3. Sung, H.C., Kim, D.W., Park, J.B., et al: ‘Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach’, Fuzzy Sets Syst., 2010, 161, pp. 919933.
    4. 4)
      • 4. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for nonlinear systems using a guaranteed cost control method’, Int. J. Control Autom. Syst., 2013, 11, (6), pp. 10751083.
    5. 5)
      • 5. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach’, IET Control Theory Appl., 2016, 10, (1), pp. 19.
    6. 6)
      • 6. Lam, H.K., Ling, W.K.: ‘Sampled-data fuzzy controller for continuous nonlinear systems’, IEEE Trans. Syst. Man Cybern., 2008, 2, (1), pp. 3239.
    7. 7)
      • 7. Yoneyama, J.: ‘Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach’, Afr. J. Libr. Arch. Inf. Sci., 2012, 198, pp. 169176.
    8. 8)
      • 8. Yang, F., Zhang, H., Hui, G., et al: ‘Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays’, Fuzzy Sets Syst., 2012, 207, pp. 4563.
    9. 9)
      • 9. Yang, F., Zhang, H., Wang, Y.: ‘An enhanced input-delay approach to sampled-data stabilization of T–S fuzzy systems via mixed convex combination’, Nonlinear Dyn., 2014, 75, (3), pp. 501512.
    10. 10)
      • 10. Zhu, X.L., Chen, B., Yue, D., et al: ‘An improved input delay approach to stabilization of fuzzy systems under variable sampling’, IEEE Trans. Fuzzy Syst., 2012, 20, (2), pp. 330341.
    11. 11)
      • 11. Sakthivel, R., Kaviarasan, B., Ma, Y.K., et al: ‘Sampled-data reliable stabilization of T–S fuzzy systems and its application’, Complexity, 2016, 21, (2), pp. 518529.
    12. 12)
      • 12. Yang, F., Zhang, H.: ‘T–S model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling’, Int. J. Fuzzy Syst., 2011, 13, (4), pp. 260269.
    13. 13)
      • 13. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al: ‘Reliable mixed H-infinity and passivity-based control for fuzzy markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    14. 14)
      • 14. Selvaraj, P., Kaviarasan, B., Sakthivel, R., et al: ‘Fault-tolerant SMC for Takagi–Sugeno fuzzy systems with time-varying delay and actuator saturation’, IET Control Theory Appl., 2017, 11, (8), pp. 11121123.
    15. 15)
      • 15. Wu, Z.G., Shi, P., Su, H., et al: ‘Sampled-data fuzzy control of chaotic systems based on a T-S fuzzy model’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 153163.
    16. 16)
      • 16. Wang, Z.P., Wu, H.N.: ‘On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach’, IEEE Trans. Cybern., 2015, 45, (4), pp. 819829.
    17. 17)
      • 17. Lam, H.K.: ‘Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach’, IEEE Trans. Syst. Man Cybern., 2012, 42, (1), pp. 258267.
    18. 18)
      • 18. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley and Sons, 2004).
    19. 19)
      • 19. Tanaka, K., Hori, T., Wang, H.O.: ‘A multiple Lyapunov function approach to stabilization of fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2003, 11, (4), pp. 582589.
    20. 20)
      • 20. Kim, H.S., Park, J.B., Joo, Y.H.: ‘Relaxed stability conditions for the Takagi–Sugeno fuzzy system using a polynomial non-quadratic Lyapunov function’, IET Control Theory Appl., 2016, 10, (13), pp. 15901599.
    21. 21)
      • 21. Gu, K.: ‘An integral inequality in the stability problem of time-delay systems’. 39th IEEE Conference on Decision and Control, 2000, pp. 28052810.
    22. 22)
      • 22. Oliveira, J.V., Bernussou, J., Geromel, J.C.: ‘A new discrete-time robust stability condition’, Syst. Control Lett., 1999, 37, (4), pp. 261265.
    23. 23)
      • 23. Lee, H.J., Park, J.B., Chen, G.: ‘Robust fuzzy control of nonlinear systems with parametric uncertainties’, IEEE Trans. Fuzzy Syst., 2001, 9, (2), pp. 369379.
    24. 24)
      • 24. Bouabdallah, S., Noth, A., Siegwart, R.: ‘PID vs LQ control techniques applied to an indoor micro quadrotor’. IEEE/RSJ Int. Conf. Intteligent Robots and Systems, 2004, pp. 24512456.
    25. 25)
      • 25. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. CACSD Conf., 2004, pp. 284289.
    26. 26)
      • 26. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Optim. Math. Softw., 1999, 11, pp. 625653.
    27. 27)
      • 27. Kim, H.S., Park, J.B., Joo, Y.H.: ‘A systematic approach to fuzzy-model-based robust H-infinity control design for a quadrotor UAV under imperfect premise matching’, Int. J. Fuzzy Syst., 2017, 19, (4), pp. 12271237.

Related content

This is a required field
Please enter a valid email address