http://iet.metastore.ingenta.com
1887

Operator-based robust non-linear vibration control for an L-shaped arm with unknown load by using on-line wavelet transform

Operator-based robust non-linear vibration control for an L-shaped arm with unknown load by using on-line wavelet transform

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An L-shaped arm with unknown load driven by a linear pulse motor is studied in this work. To control the motor motion and the arm vibration, an operator-based non-linear control is designed using an on-line discrete wavelet transform (DWT). First, the dynamics of the L-shaped arm vibration is modelled by considering the arm as a two-dimensional Euler–Bernoulli beam. The relationship between the load and the arm vibration is given. Second, by using the on-line DWT in the operator-based non-linear control, the proposed control for the system is designed. The wavelet transform is used to estimate the load and remove the influence of some undesired uncertainties. The operator-based right coprime factorisation method is used to guarantee the robust stability of the motor-arm system. The piezoelectric actuator is utilised to further reduce the arm vibration. The hysteresis of the piezoelectric actuator is compensated by using a Prandtl–Ishlinskii hysteresis model. Finally, simulation results are demonstrated to validate the proposed control.

References

    1. 1)
      • 1. Abe, A.: ‘Anti-sway control for overhead cranes using neural networks’, Int. J. Innov. Comput. Inf. Control, 2011, 7, (7), pp. 42514262.
    2. 2)
      • 2. Sun, N., Fang, Y., Zhang, Y., et al: ‘A novel kinematic coupling-based trajectory planning method for overhead cranes’, IEEE/ASME Trans. Mechatron., 2012, 17, (1), pp. 166173.
    3. 3)
      • 3. Robertson, M.J., Singhose, W.E.: ‘Robust discrete-time deflection-limiting commands for flexible systems’, IET Control Theory Appl., 2009, 3, (4), pp. 473480.
    4. 4)
      • 4. Wu, X., He, X.: ‘Enhanced damping-based anti-swing control method for underactuated overhead cranes’, IET Control Theory Appl., 2015, 9, (12), pp. 18931900.
    5. 5)
      • 5. Waghulde, K.B., Sinha, B., Patil, M.M., et al: ‘Vibration control of cantilever smart beam by using piezoelectric actuators and sensors’, Int. J. Eng. Technol., 2010, 2, (4), pp. 259262.
    6. 6)
      • 6. Chen, X., Su, C., Fukuda, T.: ‘Robust vibration control for flexible arms by using sliding mode method’, Asian J. Control, 2003, 5, (4), pp. 594604.
    7. 7)
      • 7. Su, C., Wang, Q., Chen, X., et al: ‘Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl–Ishlinskii hysteresis’, IEEE Trans. Autom. Control, 2005, 50, (12), pp. 20692074.
    8. 8)
      • 8. Chen, X., Hisayama, T., Su, C.: ‘Adaptive control for uncertain continuous-time systems using implicit inversion of Prandtl–Ishlinskii hysteresis representation’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 23572363.
    9. 9)
      • 9. Jiang, C., Deng, M., Inoue, A.: ‘Robust stability of nonlinear plants with a non-symmetric Prandtl–Ishlinskii hysteresis model’, Int. J. Syst. Sci., 2010, 7, (2), pp. 213218.
    10. 10)
      • 10. Bi, S., Deng, M., Wen, S.: ‘Operator-based output tracking control for non-linear uncertain systems with unknown time-varying delays’, IET Control Theory Appl., 2011, 5, (5), pp. 693699.
    11. 11)
      • 11. Wang, A., Deng, M.: ‘Operator-based robust nonlinear tracking control for a human multi-joint arm-like manipulator with unknown time-varying delays’, Appl. Math. Inf. Sci., 2012, 6, (3), pp. 459468.
    12. 12)
      • 12. Deng, M.: ‘Operator-based nonlinear control systems design and applications’ (Wiley, New Jersey, 2014).
    13. 13)
      • 13. Deng, M., Jiang, C., Inoue, A.: ‘Operator-based robust control for nonlinear plants with uncertain non-symmetric backlash’, Asian J. Control, 2011, 13, (2), pp. 317327.
    14. 14)
      • 14. Katsurayama, Y., Deng, M., Jiang, C.: ‘Operator-based experimental studies on nonlinear vibration control for an aircraft vertical tail with considering low-order modes’, Trans. Inst. Meas. Control, 2016, 38, (12), pp. 14211433.
    15. 15)
      • 15. Wu, Y., Deng, M.: ‘Operator-based robust nonlinear optimal vibration control for an L-shaped arm driven by linear pulse motor’, Int. J. Control Autom. Syst., 2017, 15, (5), pp. 20262033.
    16. 16)
      • 16. Strang, G., Nguyen, T.: ‘Wavelets and filter banks’ (SIAM, MA1996).
    17. 17)
      • 17. Kijewski, T., Kareem, A.: ‘Wavelet transforms for system identification in civil engineering’, Comput.-Aided Civ. Infrastruct. Eng., 2003, 18, pp. 339355.
    18. 18)
      • 18. Gao, R.X., Yan, R.: ‘Wavelets: Theory and applications for manufacturing’ (Springer Science & Business Media, New York, USA, 2010).
    19. 19)
      • 19. Parvez, S., Gao, Z.: ‘A wavelet-based multiresolution PID controller’, IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 537543.
    20. 20)
      • 20. Cole, M., Keogh, P., Burrows, C., et al: ‘Wavelet domain control of rotor vibration’, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2006, 220, (2), pp. 167184.
    21. 21)
      • 21. Xia, R., Meng, K., Qian, F., et al: ‘Online wavelet denoising via a moving window’, Acta Autom. Sin., 2007, 33, (9), pp. 897901.
    22. 22)
      • 22. Rao, S.S.: ‘Vibration of continuous systems’ (John Wiley & Sons, New Jersey, 2007).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0337
Loading

Related content

content/journals/10.1049/iet-cta.2017.0337
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address