http://iet.metastore.ingenta.com
1887

Identification method of neuro-fuzzy-based Hammerstein model with coloured noise

Identification method of neuro-fuzzy-based Hammerstein model with coloured noise

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, neuro-fuzzy-based identification procedure for Hammerstein model with coloured noise is presented. Separable signal is used to realise the decoupling of the identification of dynamic linear part from that of static non-linear part, and then correlation analysis method is adopted to identify the parameters of the linear part. Furthermore, by combining multi-innovation and gradient search theory, multi-innovation-based extended stochastic gradient approach is derived for improving the parameters estimation accuracy of the non-linear part and the noise model. In addition, the convergence analysis in the martingale theory illustrates that the parameter estimation error will converge to zero under the persistent excitation condition. Finally, two simulation results demonstrate that the proposed approach has high identification accuracy and good robustness to the disturbance of coloured noise.

References

    1. 1)
      • 1. Biagiola, S.I., Figueroa, J.L.: ‘Identification of uncertain MIMO Wiener and Hammerstein models’, Comput. Chem. Eng., 2011, 35, (12), pp. 28672875.
    2. 2)
      • 2. Zhang, H.T., Li, H.X., Chen, G.R.: ‘Dual-mode predictive control algorithm for constrained Hammerstein systems’, Int. J. Control, 2008, 81, (10), pp. 16091625.
    3. 3)
      • 3. Naeem, O., Huesmana, A.E.M.: ‘Non-linear model approximation and reduction by new input-state Hammerstein block structure’, Comput. Chem. Eng., 2011, 38, (5), pp. 758773.
    4. 4)
      • 4. Smith, J.G., Kamat, S., Madhavan, K.P.: ‘Modelling of PH process using wavenet based Hammerstein model’, J. Process Control, 2007, 17, (6), pp. 551561.
    5. 5)
      • 5. Rollins, D.K., Bhandari, N., Bassily, A.M., et al: ‘A continuous-time nonlinear dynamic predictive modeling method for Hammerstein processes’, Ind. Eng. Chem. Res., 2003, 42, (4), pp. 860872.
    6. 6)
      • 6. Li, J.H., Ding, F., Yang, G.W.: ‘Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems’, Math. Comput. Model, 2012, 55, (3-4), pp. 442450.
    7. 7)
      • 7. Ding, F., Chen, T.W.: ‘Identification of Hammerstein nonlinear ARMAX systems’, Automatica, 2005, 41, (9), pp. 14791489.
    8. 8)
      • 8. van der Veen, G., van Wingerden, J.W., Verhaegen, M.: ‘Global identification of wind turbines using a Hammerstein identification method’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14711478.
    9. 9)
      • 9. Gómez, J.C., Baeyens, E.: ‘Subspace-based identification algorithm for Hammerstein and Wiener models’, Eur. J. Control, 2005, 11, (2), pp. 127136.
    10. 10)
      • 10. Jalaleddini, K., Kearney, R.E.: ‘Subspace identification of SISO Hammerstein systems: application to stretch reflex identification’, IEEE Trans. Biomed. Eng., 2013, 61, (10), pp. 27252734.
    11. 11)
      • 11. Goethals, K., Pelckmans, J.A., Suykens, K., et al: ‘Subspace identification of Hammerstein systems using least squares support vector machines’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15091519.
    12. 12)
      • 12. Bai, E.W.: ‘Identification of linear systems with hard input nonlinearities of known structure’, Automatica, 2002, 38, (5), pp. 853860.
    13. 13)
      • 13. Jing, X.J.: ‘Frequency domain analysis and identification of block-oriented nonlinear systems’, J. Sound Vib., 2011, 330, (22), pp. 54275442.
    14. 14)
      • 14. Bai, E.W.: ‘Frequency domain identification of Hammerstein models’, IEEE Trans. Autom. Control, 2003, 48, (4), pp. 530542.
    15. 15)
      • 15. Voros, J.: ‘Iterative algorithm for parameter identification of Hammerstein systems with Two-Segment nonlinearities’, IEEE Trans. Autom. Control, 1999, 44, (11), pp. 21452149.
    16. 16)
      • 16. Bai, E.W, Li, K.: ‘Convergence of the iterative algorithm for a general Hammerstein system identification’, Automatica, 2010, 46, (11), pp. 18911896.
    17. 17)
      • 17. Krzyzak, A., Partyka, M.A.: ‘Global identification of nonlinear Hammerstein systems by recursive kernel approach’, Nonlinear Anal. Theory Methods Appl., 2005, 63, (5-7), pp. 12631272.
    18. 18)
      • 18. Sung, S.W.: ‘System identification method for Hammerstein processes’, Ind. Eng. Chem. Res., 2002, 41, (17), pp. 42954302.
    19. 19)
      • 19. Jia, L., Li, X.L., Chiu, M.S.: ‘The identification of neuro-fuzzy based MIMO Hammerstein model with separable input signals’, Neurocomputing, 2016, 174, pp. 530541.
    20. 20)
      • 20. Shen, Q.Y., Ding, F.: ‘Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle’, J. Franklin Inst., 2015, 352, (7), pp. 28472865.
    21. 21)
      • 21. Lang, Z.Q.: ‘On identification of the controlled plants described by the Hammerstein systems’, IEEE Trans. Autom. Control, 1994, 39, (3), pp. 569573.
    22. 22)
      • 22. Ding, F., Shi, Y., Chen, T.W.: ‘Gradient-based identification methods for Hammerstein nonlinear ARMAX models’, Nonlinear Dyn., 2006, 45, (1-2), pp. 3143.
    23. 23)
      • 23. Ding, F., Liu, X.G., Chu, J.: ‘Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle’, IET Control Theory Appl., 2013, 7, (2), pp. 176184.
    24. 24)
      • 24. Hu, H.Y., Xiao, Y.S., Ding, R.: ‘Multi-innovation stochastic gradient identification algorithm for Hammerstein controlled autoregressive systems based on the key term separation principle and on the model decomposition’, J. Appl. Math., 2013, 2013, pp. 17.
    25. 25)
      • 25. Mao, Y.W., Ding, F.: ‘A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems’, Digit. Signal Process., 2015, 46, pp. 215225.
    26. 26)
      • 26. Jia, L., Li, X.L., Chiu, M.S.: ‘Correlation analysis based MIMO neuro-fuzzy Hammerstein model with noises’, J. Process Control, 2016, 41, pp. 7691.
    27. 27)
      • 27. Schoukens, M., Pintelon, R., Rolain, Y.: ‘Parametric identification of parallel Hammerstein systems’, IEEE Trans. Instrum. Meas., 2011, 60, (12), pp. 39313938.
    28. 28)
      • 28. Chen, H.B., Ding, F., Xiao, Y.S.: ‘Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique’, Nonlinear Dyn., 2015, 79, (3), pp. 20272035.
    29. 29)
      • 29. Ding, F.: ‘Coupled-least-squares identification for multivariable systems’, IET Control Theory Appl., 2013, 7, (1), pp. 6879.
    30. 30)
      • 30. Aslam, M.S., Chaudhary, N.I., Raja, M.A.Z.: ‘A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems’, Nonlinear Dyn., 2017, 87, (1), pp. 519533.
    31. 31)
      • 31. Li, J.H., Zheng, W.X., Gu, J.P., et al: ‘Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements’, J. Franklin Inst., 2016, 354, (1), pp. 316331.
    32. 32)
      • 32. Ding, F., Wang, X.H., Chen, Q.J., et al: ‘Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 116.
    33. 33)
      • 33. Jia, L., Chiu, M.S., Ge, S.S.: ‘A noniterative neuro-fuzzy based identification method for Hammerstein processes’, J. Process Control, 2005, 15, (7), pp. 749761.
    34. 34)
      • 34. Sun, J.L., Liu, X.G.: ‘A novel APSO-aided maximum likelihood identification method for Hammerstein systems’, Nonlinear Dyn., 2013, 73, (1), pp. 449462.
    35. 35)
      • 35. Ma, L., Liu, X.G.: ‘Recursive maximum likelihood method for the identification of Hammerstein ARMAX system’, Appl. Math. Model, 2016, 40, (13-14), pp. 65236535.
    36. 36)
      • 36. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, SMC-15, (1), pp. 116132.
    37. 37)
      • 37. Hu, S.S.: ‘Identification of parameters of MIMO systems by correlation analysis’, Acta Aeronaut. Et Astronaut. Sin, 1990, 11, (7), pp. 400404.
    38. 38)
      • 38. Ahmed, M.S.: ‘Estimation of difference equation parameters of SISO systems by correlation analysis’, Int. J. Control, 1982, 35, (4), pp. 677687.
    39. 39)
      • 39. Solo, V.: ‘The convergence of AML’, IEEE Trans. Autom. Control, 1980, 24, (6), pp. 958962.
    40. 40)
      • 40. Chen, H.F.: ‘Strong consistency of recursive identification under correlated noise’, J. Syst. Sci. Math. Sci., 1981, 1, (1), pp. 3452.
    41. 41)
      • 41. Jia, L., Yang, A.H., Chiu, M.S.: ‘Auxiliary model recursive least square algorithm based multi-signal identification of Hammerstein model’, J. Nanjing Univ. Sci. Technol., 2014, 38, (1), pp. 3439.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0306
Loading

Related content

content/journals/10.1049/iet-cta.2017.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address