access icon free MPC motion planning-based sliding mode control for underactuated WPS vehicle via Olfati transformation

This study presents a model predictive control (MPC) motion planning-based sliding mode control (SMC) for a wheeled pendular-like suspension (WPS) vehicle by using Olfati transformation. To improve the tracking efficiency and enhance the control performance of the vehicle system, the mobile platform is required to follow the reference trajectory fast enough, while the swing of the suspension needs to be within an acceptable domain. To achieve these multi-objectives, a two-step design strategy consisting of a motion planning stage and a velocity tracking control design stage is proposed to control such an underactuated system. Specifically, a novel MPC, which satisfies various physical constraints of the WPS vehicle, is presented by which the nonholonomic constraint is dealt with as well. The SMC is then constructed in the second step to make the vehicle track the desired velocities generated by motion planning. As far as the steering subsystem is concerned, the global terminal SMC is used to ensure the fast convergence of the steering tracking; as for the forward subsystem, a composite sliding mode manifold is successfully introduced thanks to the underactuated dynamics decoupling by Olfati transformation. The numerical simulation validates the effectiveness of proposed control approaches even in the presence of sophisticated disturbance and physical limitations.

Inspec keywords: suspensions (mechanical components); predictive control; control system synthesis; position control; steering systems; wheels; vehicle dynamics; path planning; vehicles; velocity control; variable structure systems

Other keywords: sliding mode control; model predictive control; tracking efficiency; numerical simulation; vehicle system; control performance enhancement; Olfati transformation; forward subsystem; steering subsystem; reference trajectory; nonholonomic constraint; MPC; underactuated WPS vehicle; MPC motion planning; underactuated dynamics decoupling; global terminal SMC; wheeled pendular-like suspension vehicle; composite sliding mode manifold; two-step design strategy; velocity tracking control design; mobile platform

Subjects: Spatial variables control; Optimal control; Multivariable control systems; Control system analysis and synthesis methods; Control technology and theory (production); Transportation system control; Vehicle mechanics; Velocity, acceleration and rotation control

References

    1. 1)
      • 16. Xiao, B., Hu, Q.L., Zhang, Y.M.: ‘Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 16051612.
    2. 2)
      • 14. Aguiar, A.P., Hespanha, J.P.: ‘Position tracking of underactuated vehicles’. 2003 American Control Conf., vol. 3, 2003, pp. 19881993.
    3. 3)
      • 26. Sun, W., Gao, H., Kaynak, O.: ‘Vibration isolation for active suspensions with performance constraints and actuator saturation’, IEEE/ASME Trans. Mechatronics, 2015, 20, (2), pp. 675683.
    4. 4)
      • 1. Grasser, F., D'arrigo, A., Colombi, S., et al: ‘JOE: a mobile, inverted pendulum’, IEEE Trans. Ind. Electron., 2002, 49, (1), pp. 107114.
    5. 5)
      • 33. Yu, S.Y., Li, X., Chen, H., et al: ‘Nonlinear model predictive control for path following problems’, Int. J. Robust Nonlinear Control, 2015, 25, (8), pp. 11681182.
    6. 6)
      • 36. Yu, S.H., Yu, X.H., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964.
    7. 7)
      • 23. An, H., Liu, J.X., Wang, C.H., et al: ‘Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 30383049.
    8. 8)
      • 12. Mobayen, S.: ‘Design of LMI-based sliding mode controller with an exponential policy for a class of underactuated systems’, Complexity, 2016, 21, (5), pp. 117124.
    9. 9)
      • 18. Xu, L., Hu, Q.L.: ‘Output-feedback stabilisation control for a class of under-actuated mechanical systems’, IET Control Theory Appl., 2013, 7, (7), pp. 985996.
    10. 10)
      • 38. Li, S.H., Wu, C.S., Sun, Z.X.: ‘Design and implementation of clutch control for automotive transmissions using terminal-sliding-mode control and uncertainty observer’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 18901898.
    11. 11)
      • 19. Yu, X.H., Kaynak, O.: ‘Sliding-mode control with soft computing: a survey’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 32753285.
    12. 12)
      • 28. Mobayen, S.: ‘An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems’, Nonlinear Dyn., 2015, 82, (1-2), pp. 599610.
    13. 13)
      • 39. Tao, G.: ‘Adaptive control design and analysis’, (John Wiley & Sons, Hoboken, New Jersey, 2003).
    14. 14)
      • 25. Li, H.Y., Yu, J.Y., Hilton, C., et al: ‘Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 33283338.
    15. 15)
      • 7. Fang, Y.C., Ma, B.J., Wang, P.C., et al: ‘A motion planning-based adaptive control method for an underactuated crane system’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 241248.
    16. 16)
      • 13. Yu, F., Li, J., Feng, J.Z., et al: ‘A new control strategi for vehicle active suspention system using PID and fuzzy logic control’. SAE Technical Paper 2001-01-2519, 2001.
    17. 17)
      • 30. Sun, X.M., Wu, D., Liu, G.P., et al: ‘Input-to-state stability for networked predictive control with random delays in both feedback and forward channels’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 35193526.
    18. 18)
      • 6. Guo, Z.Q., Xu, J.X., Lee, T.H.: ‘Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum’, J. Franklin Inst., 2014, 351, (4), pp. 22612282.
    19. 19)
      • 20. Wu, L.G., Zheng, W.X., Gao, H.J.: ‘Dissipativity-based sliding mode control of switched stochastic systems’, IEEE Trans. Autom. Control, 2013, 58, (3), pp. 785791.
    20. 20)
      • 4. Chan, R.P.M., Stol, K.A., Halkyard, C.R.: ‘Review of modelling and control of two-wheeled robots’, Annu. Rev. Control, 2013, 37, (1), pp. 89103.
    21. 21)
      • 34. Yan, Z., Wang, J.: ‘Nonlinear model predictive control based on collective neurodynamic optimization’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (4), pp. 840850.
    22. 22)
      • 24. Sun, H.B., Li, S.H., Sun, C.Y.: ‘Finite time integral sliding mode control of hypersonic vehicles’, Nonlinear Dyn., 2013, 73, (1-2), pp. 229244.
    23. 23)
      • 10. Olfati-Saber, R.: ‘Normal forms for underactuated mechanical systems with symmetry’, IEEE Trans. Autom. Control, 2002, 47, (2), pp. 305308.
    24. 24)
      • 29. Li, H.Y., Shi, P., Yao, D.Y., et al: ‘Observer-based adaptive sliding mode control for nonlinear markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    25. 25)
      • 35. Yue, M., Sun, X.J., Li, N., et al: ‘Dynamic motion planning and adaptive tracking control for a class of two-wheeled autonomous vehicle with an underactuated pendular suspension’, ASME Trans. J. Dyn. Syst. Meas. Control, 2015, 137, (10), p. 101006.
    26. 26)
      • 31. Yan, Z., Wang, J.: ‘Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (3), pp. 457469.
    27. 27)
      • 32. Pan, Y.P., Wang, J.: ‘Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks’, IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 30893101.
    28. 28)
      • 17. Park, M.S., Chwa, D.K.: ‘Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 35413555.
    29. 29)
      • 2. Salerno, A., Angeles, J.: ‘A new family of two-wheeled mobile robots: modeling and controllability’, IEEE Trans. Robot., 2007, 23, (1), pp. 169173.
    30. 30)
      • 5. Huang, J., Ri, S., Liu, L., et al: ‘Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 24002407.
    31. 31)
      • 21. Hu, Q.L., Shao, X.D.: ‘Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft’, Aerosp. Sci. Technol., 2016, 55, pp. 144157.
    32. 32)
      • 9. Sun, N., Fang, Y.C.: ‘Nonlinear tracking control of underactuated cranes with load transferring and lowering: theory and experimentation’, Automatica, 2014, 50, (9), pp. 23502357.
    33. 33)
      • 27. Li, H.Y., Pan, Y.N., Yu, Z.D., et al: ‘Fuzzy output-feedback control for non-linear systems with input time-varying delay’, IET Control Theory Appl., 2014, 8, (9), pp. 738745.
    34. 34)
      • 8. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    35. 35)
      • 15. Xu, R., Özgüner, Ü: ‘Sliding mode control of a class of underactuated systems’, Automatica, 2008, 44, (1), pp. 233241.
    36. 36)
      • 11. Olfati-Saber, R.: ‘Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles’. PhD thesis, Massachusetts Institute of Technology, 2000.
    37. 37)
      • 3. Li, Z.J., Yang, C.G.: ‘Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 15831591.
    38. 38)
      • 37. Mobayen, S., Baleanu, D.: ‘Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach’, Nonlinear Dyn., 2016, 83, (3), pp. 15571565.
    39. 39)
      • 22. Zhou, N., Xia, Y.Q., Wang, M.L., et al: ‘Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode’, Int. J. Robust Nonlinear Control, 2015, 25, (12), pp. 18621876.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0298
Loading

Related content

content/journals/10.1049/iet-cta.2017.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading