http://iet.metastore.ingenta.com
1887

Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions

Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors investigate the problem of finite-time output regulation for a class of mismatched uncertain n-dimensional integrator, in which only the output signal is measurable and the higher derivatives of the matched and mismatched disturbances are bounded by time-varying functions. Based on a finite-time extended state observer, an output feedback controller is constructed. It is shown that even in the presence of mismatched uncertainties, whose high-order derivatives are bounded by positive functions, the output of the system can be regulated to zero in finite time without requiring the knowledge of full-state signals. An application to mass-spring mechanical systems is given to illustrate the effectiveness and attractive properties of the authors' proposed controller.

References

    1. 1)
      • 1. Huang, J.: ‘Nonlinear output regulation: theory and applications’ (SIAM, Philadelphia, USA, 2004).
    2. 2)
      • 2. Zhao, Y., Zhang, W.: ‘Cooperative output regulation of linear heterogeneous systems with mismatched uncertainties via generalized extended state observer’, IET Control Theory Appl., 2017, 11, (5), pp. 685693.
    3. 3)
      • 3. Byrnes, C.I., Priscoli, F.D., Isidori, A.: ‘Output regulation of uncertain nonlinear systems’ (Brikhauser, Boston, MA, 2012).
    4. 4)
      • 4. Utkin, V., Guldner, J., Shi, J.: ‘Sliding mode control in electro-mechanical systems’ (Taylor & Francis Ltd, London, 2009).
    5. 5)
      • 5. Han, J.: ‘From PID to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    6. 6)
      • 6. Guo, B.-Z., Zhao, Z.-L.: ‘On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty’, IET Control Theory Appl., 2012, 6, (15), pp. 23752386.
    7. 7)
      • 7. Zhao, Z.-L., Guo, B.-Z.: ‘Extended state observer for uncertain lower triangular nonlinear systems’, Syst. Control Lett., 2015, 85, pp. 100108.
    8. 8)
      • 8. Xia, Y., Zhu, Z., Fu, M.: ‘Back-stepping sliding mode control for missile systems based on an extended state observer’, IET Control Theory Appl., 2011, 5, (1), pp. 93102.
    9. 9)
      • 9. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167.
    10. 10)
      • 10. Shtessel, Y., Edwards, C., Fridman, L., et al.: ‘Sliding mode control and observation’ (Springer, 2014).
    11. 11)
      • 11. Choi, H.H.: ‘An LMI-based switching surface design method for a class of mismatched uncertain systems’, IEEE Trans. Autom. Control, 2003, 48, (9), pp. 16341638.
    12. 12)
      • 12. Loukianov, A.G.: ‘Robust block decomposition sliding mode control design’, Math. Problems Eng., 2002, 8, (4-5), pp. 349365.
    13. 13)
      • 13. Yang, J., Li, S., Yu, X.: ‘Sliding-mode control for systems with mismatched uncertainties via a disturbance observer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 160169.
    14. 14)
      • 14. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766.
    15. 15)
      • 15. Huang, X.-Q., Lin, W., Yang, B.: ‘Global finite-time stabilization of a class of uncertain nonlinear systems’, Automatica, 2005, 41, (5), pp. 881888.
    16. 16)
      • 16. Qian, C.-J., Li, J.: ‘Global Finite-time stabilization by output feedback for planar systems without observable linearization’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 885890.
    17. 17)
      • 17. Estrada, A., Fridman, L.: ‘Quasi-continuous HOSM control for systems with unmatched perturbations’, Automatica, 2010, 46, (11), pp. 19161919.
    18. 18)
      • 18. Estrada, A., Fridman, L.: ‘Integral HOSM semiglobal controller for finite-time exact compensation of unmatched perturbations’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 26452649.
    19. 19)
      • 19. Feng, Y., Han, F., Yu, X.: ‘Chattering free full-order sliding-mode control’, Automatica, 2014, 50, (4), pp. 13101314.
    20. 20)
      • 20. Yang, J., Li, S., Su, J., et al.: ‘Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances’, Automatica, 2013, 49, (7), pp. 22872291.
    21. 21)
      • 21. Li, S., Sun, H., Yang, J., et al.: ‘Continuous finite-time output regulation for disturbed systems under mismatching condition’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 277282.
    22. 22)
      • 22. Ding, S., Wang, J., Zheng, W.: ‘Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58995909.
    23. 23)
      • 23. Ding, S., Levant, A., Li, S.: ‘Simple homogeneous sliding-mode controller’, Automatica, 2016, 67, pp. 2232.
    24. 24)
      • 24. Basin, M.V., Panathula, C.B., Shtessel, Y.B., et al.: ‘Continuous finite-time higher order output regulators for systems with unmatched unbounded disturbances’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 50365043.
    25. 25)
      • 25. Guo, B.-Z., Wu, Z.-H.: ‘Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control’, Syst. Control Lett., 2017, 100, pp. 2131.
    26. 26)
      • 26. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9-10), pp. 924941.
    27. 27)
      • 27. Hardy, G.H., Littlewood, J.E., Pólya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, UK, 1952).
    28. 28)
      • 28. Qian, C.-J., Lin, W.: ‘A continuous feedback approach to global strong stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, (7), pp. 10611079.
    29. 29)
      • 29. Shi, S., Yu, X., Khoo, S.: ‘Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements’, Int. J. Control, 2016, 89, (2), pp. 127.
    30. 30)
      • 30. Levant, A.: ‘Globally convergent fast exact differentiator with variable gains’. Proc. Conf. European Control, 2014, pp. 29252930.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0291
Loading

Related content

content/journals/10.1049/iet-cta.2017.0291
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address