access icon free Switching-signal-triggered pinning control for output tracking of switched Boolean networks

In this research the output tracking problems with respect to a constant and a periodic output signal for switched Boolean networks (BNs) are studied. Based on the semi-tensor product of matrices, an algebraic expression of switched BNs is obtained. Then, some conditions are presented to ensure output tracking issues with respect to a constant and a periodic output signal, respectively. Further, a new design of switching-signal-triggered pinning controllers is proposed to achieve output tracking. Finally, the discussion of an apoptosis network shows that the theoretic results are effective in designing the switching-signal-triggered pinning controllers to achieve output tracking.

Inspec keywords: matrix algebra; Boolean functions; time-varying systems; control system synthesis

Other keywords: switched BN; matrix semitensor product; switched Boolean networks; algebraic expression; switching-signal-triggered pinning control; output tracking; switching-signal-triggered pinning controllers

Subjects: Time-varying control systems; Control system analysis and synthesis methods; Algebra

References

    1. 1)
      • 8. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of boolean networks: a semi-tensor product approach’ (Springer-Verlag, New York, USA, 2011).
    2. 2)
      • 21. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    3. 3)
      • 7. Farrow, C., Heidel, J., Maloney, J., et al: ‘Scalar equations for synchronous Boolean networks with biological applications’, IEEE Trans. Neural Netw., 2004, 15, (2), pp. 348354.
    4. 4)
      • 17. Lu, J., Zhong, J., Ho, D.W.C., et al: ‘On controllability of delayed boolean control networks’, SIAM J. Control Optim., 2016, 54, pp. 475494.
    5. 5)
      • 25. Liu, Z., Wang, Y., Cheng, D.: ‘Nonsingularity of feedback shift registers’, Automatica, 2015, 55, pp. 247253.
    6. 6)
      • 14. Bof, N., Fornasini, E., Valcher, M.E.: ‘Output feedback stabilization of Boolean control networks’, Automatica, 2015, 57, pp. 2128.
    7. 7)
      • 38. Xu, W., Chen, G., Ho, D.W.C.: ‘A layered event-triggered consensus scheme’, IEEE Trans. Cybern., 2016, DOI: 10.1109/TCYB.2016.2571122, in press.
    8. 8)
      • 23. Cheng, D., Xu, T., Qi, H.: ‘Evolutionarily stable strategy of networked evolutionary games’, IEEE Trans. Neural Netw. Learn Syst., 2014, 25, (7), pp. 13351345.
    9. 9)
      • 20. Liu, Y., Lu, J., Wu, B.: ‘Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks’, ESAIM Control Optim. Calc. Var., 2014, 20, (1), pp. 158173.
    10. 10)
      • 34. Li, H., Wang, Y.: ‘Controllability analysis and control design for switched Boolean networks with state and input constraints’, SIAM J. Control Optim., 2015, 53, (5), pp. 29552979.
    11. 11)
      • 32. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    12. 12)
      • 11. Laschov, D., Margaliot, M., Even, G.: ‘Observability of Boolean networks: a graphtheoretic approach’, Automatica, 2013, 49, (8), pp. 23512362.
    13. 13)
      • 42. Niu, B., Zhao, X., Zhang, L., et al: ‘p-times differentiable unbounded functions for robust control of uncertain switched nonlinear systems with tracking constraints’, Int. J. Robust Nonlin. Control, 2015, 25, (16), pp. 29652983.
    14. 14)
      • 29. Huang, S., Ingber, D.E.: ‘Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks’, Exp. Cell Res., 2000, 261, (1), pp. 91103.
    15. 15)
      • 39. Xu, W., Ho, D.W.C.: ‘Clustered event-triggered consensus analysis: an impulsive framework’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 71337143.
    16. 16)
      • 19. Zhong, J., Lu, J., Huang, T., et al: ‘Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks’, IEEE Trans. Cybern., 2016, DOI: 10.1109/TCYB.2016.2560240, in press.
    17. 17)
      • 43. Niu, B., Zhao, J.: ‘Tracking control for output-constrained nonlinear switched systems with a barrier Lyapunov function’, Int. J. Syst. Sci., 2013, 44, pp. 978985.
    18. 18)
      • 24. Zhong, J., Lin, D.: ‘Driven stability of nonlinear feedback shift registers with inputs’, IEEE Trans. Commun., 2016, 64, (6), pp. 22742284.
    19. 19)
      • 49. Chaves, M.: ‘Methods for qualitative analysis of genetic networks’. 2009 European Control Conf. (ECC), 2009, pp. 671676.
    20. 20)
      • 30. Xu, W., Ho, D.W.C., Li, L., et al: ‘Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies’, IEEE Trans. Cybern., 2017, 47, (1), pp. 212223.
    21. 21)
      • 5. Kauffman, S.A.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437467.
    22. 22)
      • 48. Li, H., Wang, Y., Liu, Z.: ‘Stability analysis for switched Boolean networks under arbitrary switching signals’, IEEE Trans. Autom. Control, 2014, 59, (7), pp. 19781982.
    23. 23)
      • 47. Li, F.: ‘Pinning control design for the stabilization of Boolean networks’, IEEE Trans. Neural Netw. Learn Syst, 2015, 27, (7), pp. 15851590.
    24. 24)
      • 4. Liang, J., Lam, J., Wang, Z.: ‘State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates’, Phys. Lett. A, 2009, 373, (47), pp. 43284337.
    25. 25)
      • 40. Padfield, D., Rittscher, J., Roysam, B.: ‘Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis’, Med. Image Anal., 2011, 15, (4), pp. 650668.
    26. 26)
      • 33. Chen, H., Liang, J., Huang, T., et al: ‘Synchronization of arbitrarily switched Boolean networks’, IEEE Trans. Neural Netw. Learn Syst., 2017, 28, (3), pp. 612619.
    27. 27)
      • 37. Meijering, E., Dzyubachyk, O., Smal, I., et al: ‘Tracking in cell and developmental biology’, Semin. Cell Dev. Biol., 2009, 20, (8), pp. 894902.
    28. 28)
      • 22. Li, H., Wang, Y.: ‘Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method’, Automatica, 2012, 48, (4), pp. 688693.
    29. 29)
      • 15. Li, H., Xie, L., Wang, Y.: ‘On robust control invariance of Boolean control networks’, Automatica, 2016, 68, pp. 392396.
    30. 30)
      • 31. Xu, W., Cao, J., Yu, W., et al: ‘Leader-following consensus of non-linear multi-agent systems with jointly connected topology’, IET Control Theory Appl., 2014, 8, (6), pp. 432440.
    31. 31)
      • 28. Tian, T.H., Burrage, K.: ‘Bistability and switching in the lysis/lysogeny genetic regulatory network of bacteriophage λ’, J. Theor. Biol., 2004, 227, (2), pp. 229237.
    32. 32)
      • 26. Han, X., Chen, Z., Liu, Z., et al: ‘Calculation of siphons and minimal siphons in petri nets based on semi-tensor product of matrices’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, pp. 531536.
    33. 33)
      • 1. DeRisi, J.L., Iyer, V.R., Brown, P.O.: ‘Exploring the metabolic and genetic control of gene expression on a genomic scale’, Adv. Colloid Interface Sci., 1997, 278, (5338), pp. 680686.
    34. 34)
      • 12. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the Perron–Frobenius theory’, Automatica, 2012, 48, (6), pp. 12181223.
    35. 35)
      • 46. Li, H., Wang, Y., Guo, P.: ‘State feedback based output tracking control of probabilistic Boolean networks’, Inf. Sci., 2016, 349, pp. 111.
    36. 36)
      • 36. Chen, H., Sun, J.: ‘Output controllability and optimal output control of state-dependent switched Boolean control networks’, Automatica, 2016, 50, (7), pp. 19291934.
    37. 37)
      • 18. Zhong, J., Lu, J., Liu, Y., et al: ‘Synchronization in an array of output-coupled Boolean networks with time delay’, IEEE Trans. Neural Netw. Learn Syst., 2014, 25, (12), pp. 22882294.
    38. 38)
      • 13. Zou, Y., Zhu, J.: ‘Cycles of periodically time-variant Boolean networks’, Automatica, 2015, 51, pp. 175179.
    39. 39)
      • 9. Cheng, D., Qi, H.: ‘A linear representation of dynamics of Boolean networks’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 22512258.
    40. 40)
      • 35. Zhang, K., Zhang, L., Xie, L.: ‘Finite automata approach to observability of switched Boolean control networks’, Nonlinear Anal.: Hybrid Syst., 2016, 19, pp. 186197.
    41. 41)
      • 44. Li, H., Wang, Y., Xie, L.: ‘Output tracking control of Boolean control networks via state feedback: Constant reference signal case’, Automatica, 2015, 59, pp. 5459.
    42. 42)
      • 16. Lu, J., Zhong, J., Huang, C., et al: ‘On pinning controllability of Boolean control networks’, IEEE Trans. Autom. Control, 2016, 61, pp. 16581663.
    43. 43)
      • 45. Li, H., Wang, Y.: ‘Output tracking of switched Boolean networks under open-loop/closed-loop switching signals’, Nonlinear Anal.: Hybrid Syst., 2016, 22, pp. 137146.
    44. 44)
      • 10. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 16591667.
    45. 45)
      • 41. Niu, B., Zhao, J.: ‘Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems’, Syst. Control Lett., 2013, 62, (10), pp. 963971.
    46. 46)
      • 3. Julius, A.A., Halász, Á., Sakar, M.S., et al: ‘Stochastic modeling and control of biological systems: the lactose regulation system of Escherichia coli’, IEEE Trans. Autom. Control, 2008, 53, pp. 5165.
    47. 47)
      • 27. Gardner, T.S., Cantor, C.R., Collins, J.J.: ‘Construction of a genetic toggle switch in Escherichia coli’, Nature, 2013, 403, (6767), pp. 339342.
    48. 48)
      • 6. Heidel, J., Maloney, J., Farrow, C., et al: ‘Finding cycles in synchronous Boolean networks with applications to biochemical systems’, Int. J. Bifurcation Chaos, 2003, 13, (03), pp. 535552.
    49. 49)
      • 2. Botstein, D., Fink, G.R.: ‘Yeast: an experimental organism for modern biology’, Adv. Colloid Interface Sci., 1988, 240, (4858), pp. 14391443.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0260
Loading

Related content

content/journals/10.1049/iet-cta.2017.0260
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading