access icon free Distributed optimal integrated tracking control for separate kinematic and dynamic uncertain non-holonomic mobile mechanical multi-agent systems

This study addres,ses a distributed optimal integrated tracking control method with disturbance rejection for separate kinematic and dynamic uncertain non-holonomic mobile mechanical multi-agent () systems. Initially, based on the graph theory, the overall tracking systems of agents are defined and the distributed optimal tracking problem of separate kinematics and dynamics is transformed into an equivalent distributed optimal regulation problem of the integrated affine system. Then, neural network (NN)-based adaptive dynamic programming and cooperative differential game theory is utilised for control, in which only one NN is required for each agent. The NN weight-tuning law and the online algorithm is developed to approximate the value function, and synchronously update both optimal control and worst disturbance laws in only one iterative loop. The tracking errors and function approximation errors are proven to be uniformly ultimately bounded using Lyapunov theory. Finally, as applications of the proposed method, control of the wheeled mobile multi-robot system is discussed. The effectiveness of the method is demonstrated by the results of the comparative numerical simulation.

Inspec keywords: iterative learning control; differential games; optimal control; multi-robot systems; mobile robots; dynamic programming; Lyapunov methods; neurocontrollers

Other keywords: equivalent distributed optimal regulation problem; integrated affine system; tracking errors; NN-based adaptive dynamic programming; iterative loop; tracking systems; online algorithm; kinematic uncertain nonholonomic mobile mechanical multiagent systems; graph theory; dynamic uncertain nonholonomic mobile mechanical multiagent systems; neural network; function approximation errors; numerical simulation; Lyapunov theory; distributed optimal integrated tracking control; disturbance rejection; NN weight-tuning law; optimal control; wheeled mobile multirobot system; cooperative differential game theory; worst disturbance laws

Subjects: Neurocontrol; Game theory; Optimisation techniques; Optimal control; Self-adjusting control systems; Stability in control theory; Mobile robots

References

    1. 1)
      • 6. Yu, X., Liu, L.: ‘Distributed formation control of nonholonomic vehicles subject to velocity constraints’, IEEE Trans. Ind. Electron., 2016, 36, (2), pp. 12891298.
    2. 2)
      • 28. Lewis, F.L., Zhang, H.W., Hengster-Movric, K., , et al: ‘Cooperative control of multi-agent systems: optimal and adaptive design approaches’ (Spring-Verlag, Berlin, 2014).
    3. 3)
      • 9. Dierks, T., Jagannathan, S.: ‘Neural network output feedback control of robot formations’, IEEE Trans, Syst. Man Cybern. B, Cybern., 2010, 40, (2), pp. 383399.
    4. 4)
      • 17. Dierks, T., Brenner, B., Jagannathan, S.: ‘Neural network-based optimal control of mobile robot formations with reduced information exchange’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14071415.
    5. 5)
      • 20. Zargarzadeh, H., Dierks, T., Jagannathan, S.: ‘Optimal control of nonlinear continuous-time systems in strict-feedback form’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (10), pp. 25352549.
    6. 6)
      • 2. Dong, W.: ‘Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory’, IEEE Trans. Robot., 2012, 28, (1), pp. 262268.
    7. 7)
      • 37. Finlayson, B.A.: ‘The method of weighted residuals and variational principles’ (Academic Press, New York, 1990).
    8. 8)
      • 10. Chen, X., Hao, F., Ma, B.: ‘Periodic event-triggered cooperative control of multiple non-holonomic wheeled mobile robots’, IET Control Theory Appl., 2017, 11, (6), pp. 890899.
    9. 9)
      • 35. Vamvoudakis, K.G., Lewis, F.: ‘Online solution of nonlinear two-player zero-sum games using synchronous policy iteration’, Int. J. Robust Nonlinear Control, 2012, 22, pp. 14601483.
    10. 10)
      • 42. Lewis, F.L., Jagannathan, S., Yesildirek, A.: ‘Neural network control of robot manipulators and nonlinear systems’ (Taylor and Francis, Philadelphia, PA, 1999).
    11. 11)
      • 12. Sarkar, N., Yun, X., Kumar, V.: ‘Control of mechanical systems with rolling constraints application to dynamic control of mobile robots’, Int. J. Robot. Res., 1994, 13, (1), pp. 5569.
    12. 12)
      • 19. Fierro, R., Lewis, F.L.: ‘Control of a nonholonomic mobile robot using neural networks’, IEEE Trans. Neural Netw., 1998, 9, (4), pp. 589600.
    13. 13)
      • 7. Khoo, S., Xie, L., Man, Z.: ‘Robust finite-time consensus tracking algorithm for multirobot systems’, IEEE/ASME Trans. Mechatronics, 2009, 14, (2), pp. 219228.
    14. 14)
      • 23. Wang, J., Xin, M.: ‘Distributed optimal cooperative tracking control of multiple autonomous robots’, Robot. Auton. Syst., 2012, 60, (4), pp. 572583.
    15. 15)
      • 27. Luy, N.T.: ‘Adaptive dynamic programming-based design of integrated neural network structure for cooperative control of multiple MIMO nonlinear systems’, Neurocomputing, 2017, 237, pp. 1214.
    16. 16)
      • 25. Jiao, Q., Modares, H., Xu, S., , et al: ‘Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control’, Automatica, 2016, 69, pp. 2434.
    17. 17)
      • 24. Movric, K.H., Lewis, F.L.: ‘Cooperative optimal control for multi-agent systems on directed graph topologies’, IEEE Trans. Autom. Control, 2014, 29, (3), pp. 769774.
    18. 18)
      • 39. Abu-Khalaf, M., Lewis, F.L.: ‘Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach’, Automatica, 2005, 41, (5), pp. 779791.
    19. 19)
      • 40. Ioannou, P., Fidan, B.: ‘Advances in design and control, adaptive control tutorial’ (SIAM, PA, 2006).
    20. 20)
      • 22. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: ‘Control and stabilization of nonholonomic dynamic systems’, IEEE Trans. Autom. Control, 1992, 37, (11), pp. 17461757.
    21. 21)
      • 11. Qiu, Y., Xiang, L.: ‘Distributed adaptive coordinated tracking for coupled non-holonomic mobile robots’, IET Control Theory Appl., 2014, 8, (18), pp. 23362345.
    22. 22)
      • 1. Dong, W., Farrell, J.A.: ‘Cooperative control of multiple nonholonomic mobile agents’, IEEE Trans. Autom. Control, 2008, 53, (6), pp. 14341448.
    23. 23)
      • 18. Lee, S.M., Myung, H.: ‘Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots’, IET Control Theory Appl., 2015, 9, (14), pp. 20752083.
    24. 24)
      • 4. Panagou, D., Stipanoviæ, D.M., Voulgaris, P.G.: ‘Distributed coordination control for multi-robot networks using lyapunov-like barrier functions’, IEEE Trans. Autom. Control, 2016, 61, (3), pp. 617632.
    25. 25)
      • 16. Yoo, S.J., Park, J.B., Choi, Y.H.: ‘Adaptive formation tracking control of electrically driven multiple mobile robots’, IET Control Theory Appl., 2010, 4, (8), pp. 14891500.
    26. 26)
      • 29. Luy, N.T., Thanh, N.T., Tri, H.M.: ‘Reinforcement learning-based intelligent tracking control for wheeled mobile robot’, Trans. Inst. Meas. Control, 2014, 36, (7), pp. 868877.
    27. 27)
      • 38. Hornik, K., Stinchcombe, M., White, H.: ‘Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks’, IEEE Trans. Neural Netw., 1990, 3, (5), pp. 551560.
    28. 28)
      • 21. Tatari, F., Naghibi-Sistani, M.B., Vamvoudakis, K.G.: ‘Distributed learning algorithm for nonlinear differential graphical games’, Trans. Inst. Meas. Control, 2017, 39, (2), pp. 173182.
    29. 29)
      • 3. Sun, D., Wang, C., Shang, W., , et al: ‘A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations’, IEEE Trans. Robot., 2009, 25, (5), pp. 10741086.
    30. 30)
      • 15. Das, T., Kar, I.N.: ‘Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots’, IEEE Trans. Control Syst. Technol., 2006, 14, (13), pp. 501510.
    31. 31)
      • 14. Khoshnam, S., Alireza, M.S., Ahmadrez, T.: ‘Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties’, Robot. Comput.-Integr. Manuf., 2011, 27, (1), pp. 194204.
    32. 32)
      • 13. Shojaei, K., Shahri, A.M.: ‘Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach’, IET Control Theory Appl., 2012, 6, (2), pp. 216228.
    33. 33)
      • 32. Aliyu, M.D.S.: ‘Nonlinear H control, Hamiltonian systems and Hamilton–Jacobi equations’ (CRC Press, Taylor & Francis Group, Boca Raton, 2011).
    34. 34)
      • 8. Peng, Z., Yang, S., Wen, G., , et al: ‘Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots’, Neurocomputing, 2016, 173, (3), pp. 14851494.
    35. 35)
      • 30. Chang, Y., Chen, B.: ‘A nonlinear adaptive H tracking control design in robotic systems via neural networks’, IEEE Trans. Control Syst. Technol., 1997, 5, (1), pp. 1329.
    36. 36)
      • 34. Basar, T., Bernhard, P.: ‘H optimal control and related minimax design problems: a dynamic game approach’ (Birkhäuser, Boston, MA, 1995, 2nd edn.).
    37. 37)
      • 26. Vamvoudakis, K.G., Lewis, F.L.: ‘Multi-player non-zero-sum games: online adaptive learning solution of coupled Hamilton-Jacobi equations’, Automatica, 2011, 47, (8), pp. 15561569.
    38. 38)
      • 33. Vamvoudakis, K.G., Lewis, F.L., Hudas, G.R.: ‘Multi-agent differential graphical games: online adaptive learning solution for synchronization with optimality’, Automatica, 2012, 48, pp. 15981611.
    39. 39)
      • 41. Vamvoudakis, K.G., Lewis, F.L.: ‘Online actor–critic algorithm to solve the continuous-time inifinite horizon optimal control problem’, Automatica, 2010, 46, (5), pp. 878888.
    40. 40)
      • 5. Wang, Z., Gu, D.: ‘Cooperative target tracking control of multiple robots’, IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 32323240.
    41. 41)
      • 31. Wang, L., Wang, X., Hu, X.: ‘Connectivity maintenance and distributed tracking for double-integrator agents with bounded potential functions’, Int. J. Robust Nonlinear Control, 2015, 25, (4), pp. 542558.
    42. 42)
      • 36. Lewis, F.L., Vrabie, D.L., Syrmos, V.L.: ‘Optimal control’ (John Wiley Sons Inc., Hoboken, 2012, 3rd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0259
Loading

Related content

content/journals/10.1049/iet-cta.2017.0259
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading