© The Institution of Engineering and Technology
A tubebased robust model predictive control (MPC) is proposed to be applied in constrained linear systems with parametric uncertainty. An estimation method is applied in this proposed technique to adapt the system model at each sampling time and to reduce the conservatism nature of the tubebased MPC as the system model approaches the real model as time passes. By updating the subject model online through this newly proposed approach the performance of the system is improved. Asymptotic stability of the closedloop system is established. The simulation results of a DC motor are applied to illustrate the effectiveness of this proposed controller in dealing with one practical system.
References


1)

1. Qin, S.J., Badgwell, T.A.: ‘A survey of industrial model predictive control technology’, Control Eng. Pract., 2003, 11, (7), pp. 733–764.

2)

2. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 2967–2986.

3)

3. Adetola, V., DeHaan, D., Guay, M.: ‘Adaptive model predictive control for constrained nonlinear systems’, Syst. Control Lett., 2009, 58, (5), pp. 320–326.

4)

4. Gonzalez, A., Odloak, D.: ‘Robust model predictive controller with output feedback and target tracking’, IET Control Theory Appl., 2010, 4, (8), pp. 1377–1390.

5)

5. Mayne, D.Q., Kerrigan, E.C., Falugi, P.: ‘Robust model predictive control: advantages and disadvantages of tubebased methods’. Proc. of the 18th IFAC World Congress, 2011, pp. 191–196.

6)

6. Kothare, M.V., Balakrishnan, V., Morari, M.: ‘Robust constrained model predictive control using linear matrix inequalities’, Automatica, 1996, 32, (10), pp. 1361–1379.

7)

7. Rawlings, J., Mayne, D.: ‘Model predictive control: theory and design’ (Nob Hill Publishing, 2016).

8)

8. Mayne, D.Q., Langson, W.: ‘Robustifying model predictive control of constrained linear systems’, Electron. Lett., 2001, 37, (24), pp. 1422–1423.

9)

9. Langson, W., Chryssochoos, I., Raković, S.V., et al.: ‘Robust model predictive control using tubes’, Automatica, 2004, 40, (1), pp. 125–133.

10)

10. Mayne, D.Q., Seron, M.M., Raković, S.V.: ‘Robust model predictive control of constrained linear systems with bounded disturbances’, Automatica, 2005, 41, (2), pp. 219–224.

11)

11. Mayne, D., Rakovic, S., Findeisen, R., et al.: ‘Robust output feedback model predictive control of constrained linear systems’, Automatica, 2006, 42, (7), pp. 1217–1222.

12)

12. Limon, D., Alvarado, I., Alamo, T., et al.: ‘Robust tubebased MPC for tracking of constrained linear systems with additive disturbances’, J. Process Control, 2010, 20, (3), pp. 248–260.

13)

13. Bumroongsri, P.: ‘Tubebased robust MPC for linear timevarying systems with bounded disturbances’, Int. J. Control Autom. Syst., 2015, 13, (3), pp. 620–625.

14)

14. Ramirez, D.R., Alamo, T., Camacho, E.F., et al.: ‘Minmax MPC based on a computationally efficient upper bound of the worst case cost’, J. Process Control, 2006, 16, (5), pp. 511–519.

15)

15. Zigang, P., Basar, T.: ‘Parameter identification for uncertain linear systems with partial state measurements under an hinf criterion’, IEEE Trans. Autom. Control, 1996, 41, (9), pp. 1295–1311.

16)

16. Lehrer, D., Adetola, V., Guay, M.: ‘Parameter identification methods for nonlinear discretetime systems’. American Control Conf., 2010, pp. 2170–2175.

17)

17. Ioannou, P., Fidan, B.: ‘Adaptive control tutorial’ (Society for Industrial and Applied Mathematics, 2006).

18)

18. Mayne, D., Rawlings, J., Rao, C., et al.: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789–814.

19)

19. Chen, H., Allgöwer, F.: ‘A quasiinfinite horizon nonlinear model predictive control scheme with guaranteed stability’, Automatica, 1998, 34, (10), pp. 1205–1217.

20)

20. Blanchini, F.: ‘Constrained control for uncertain linear systems’, J. Optim. Theory Appl., 1991, 71, (December), pp. 465–484.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0228
Related content
content/journals/10.1049/ietcta.2017.0228
pub_keyword,iet_inspecKeyword,pub_concept
6
6