http://iet.metastore.ingenta.com
1887

Adaptive tube-based model predictive control for linear systems with parametric uncertainty

Adaptive tube-based model predictive control for linear systems with parametric uncertainty

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A tube-based robust model predictive control (MPC) is proposed to be applied in constrained linear systems with parametric uncertainty. An estimation method is applied in this proposed technique to adapt the system model at each sampling time and to reduce the conservatism nature of the tube-based MPC as the system model approaches the real model as time passes. By updating the subject model online through this newly proposed approach the performance of the system is improved. Asymptotic stability of the closed-loop system is established. The simulation results of a DC motor are applied to illustrate the effectiveness of this proposed controller in dealing with one practical system.

References

    1. 1)
      • 1. Qin, S.J., Badgwell, T.A.: ‘A survey of industrial model predictive control technology’, Control Eng. Pract., 2003, 11, (7), pp. 733764.
    2. 2)
      • 2. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 29672986.
    3. 3)
      • 3. Adetola, V., DeHaan, D., Guay, M.: ‘Adaptive model predictive control for constrained nonlinear systems’, Syst. Control Lett., 2009, 58, (5), pp. 320326.
    4. 4)
      • 4. Gonzalez, A., Odloak, D.: ‘Robust model predictive controller with output feedback and target tracking’, IET Control Theory Appl., 2010, 4, (8), pp. 13771390.
    5. 5)
      • 5. Mayne, D.Q., Kerrigan, E.C., Falugi, P.: ‘Robust model predictive control: advantages and disadvantages of tube-based methods’. Proc. of the 18th IFAC World Congress, 2011, pp. 191196.
    6. 6)
      • 6. Kothare, M.V., Balakrishnan, V., Morari, M.: ‘Robust constrained model predictive control using linear matrix inequalities’, Automatica, 1996, 32, (10), pp. 13611379.
    7. 7)
      • 7. Rawlings, J., Mayne, D.: ‘Model predictive control: theory and design’ (Nob Hill Publishing, 2016).
    8. 8)
      • 8. Mayne, D.Q., Langson, W.: ‘Robustifying model predictive control of constrained linear systems’, Electron. Lett., 2001, 37, (24), pp. 14221423.
    9. 9)
      • 9. Langson, W., Chryssochoos, I., Raković, S.V., et al.: ‘Robust model predictive control using tubes’, Automatica, 2004, 40, (1), pp. 125133.
    10. 10)
      • 10. Mayne, D.Q., Seron, M.M., Raković, S.V.: ‘Robust model predictive control of constrained linear systems with bounded disturbances’, Automatica, 2005, 41, (2), pp. 219224.
    11. 11)
      • 11. Mayne, D., Rakovic, S., Findeisen, R., et al.: ‘Robust output feedback model predictive control of constrained linear systems’, Automatica, 2006, 42, (7), pp. 12171222.
    12. 12)
      • 12. Limon, D., Alvarado, I., Alamo, T., et al.: ‘Robust tube-based MPC for tracking of constrained linear systems with additive disturbances’, J. Process Control, 2010, 20, (3), pp. 248260.
    13. 13)
      • 13. Bumroongsri, P.: ‘Tube-based robust MPC for linear time-varying systems with bounded disturbances’, Int. J. Control Autom. Syst., 2015, 13, (3), pp. 620625.
    14. 14)
      • 14. Ramirez, D.R., Alamo, T., Camacho, E.F., et al.: ‘Min-max MPC based on a computationally efficient upper bound of the worst case cost’, J. Process Control, 2006, 16, (5), pp. 511519.
    15. 15)
      • 15. Zigang, P., Basar, T.: ‘Parameter identification for uncertain linear systems with partial state measurements under an hinf criterion’, IEEE Trans. Autom. Control, 1996, 41, (9), pp. 12951311.
    16. 16)
      • 16. Lehrer, D., Adetola, V., Guay, M.: ‘Parameter identification methods for non-linear discrete-time systems’. American Control Conf., 2010, pp. 21702175.
    17. 17)
      • 17. Ioannou, P., Fidan, B.: ‘Adaptive control tutorial’ (Society for Industrial and Applied Mathematics, 2006).
    18. 18)
      • 18. Mayne, D., Rawlings, J., Rao, C., et al.: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    19. 19)
      • 19. Chen, H., Allgöwer, F.: ‘A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability’, Automatica, 1998, 34, (10), pp. 12051217.
    20. 20)
      • 20. Blanchini, F.: ‘Constrained control for uncertain linear systems’, J. Optim. Theory Appl., 1991, 71, (December), pp. 465484.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0228
Loading

Related content

content/journals/10.1049/iet-cta.2017.0228
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address