http://iet.metastore.ingenta.com
1887

Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions

Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with a stabilisation problem of a boundary controlled fractional reaction diffusion (FRD) system with mixed or Robin boundary conditions. The contribution of this study is to utilise boundary feedback control to stabilise the FRD system with mixed or Robin boundary conditions in terms of the backstepping method. Specifically, three backstepping-based boundary feedback controllers have been proposed to address the stabilisation problem of the FRD system with mixed or Robin boundary conditions, including Dirichlet, Neumann, and Robin backstepping-based boundary feedback controllers. Moreover, based on Lyapunov-based Mittag–Leffler stability theory, we prove that the FRD system with mixed or Robin boundary conditions is Mittag–Leffler stable by the proposed three backstepping-based boundary feedback controllers. Finally, the numerical efforts of the open-loop and the closed-loop solutions of the FRD systems with mixed or Robin boundary conditions are presented by two numerical experiments to verify the validness of our results.

References

    1. 1)
      • 1. Mimura, M., Sakaguchi, H., Matsushita, M.: ‘Reaction-diffusion modelling of bacterial colony patterns’, Phys. A Stat. Mech. Appl., 2000, 282, (1-2), pp. 283303.
    2. 2)
      • 2. Wilhelmsson, H., Lazzaro, E.: ‘Reaction-diffusion problems in the physics of hot plasmas’ (CRC Press, 2000).
    3. 3)
      • 3. Kuramoto, Y.: ‘Chemical oscillations, waves, and turbulence’, vol. 19, (Springer, Berlin, Heidelberg, 1984).
    4. 4)
      • 4. Hornung, G., Berkowitz, B., Barkai, N.: ‘Morphogen gradient formation in a complex environment: an anomalous diffusion model’, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 72, (4), p. 041916.
    5. 5)
      • 5. Chen, Y.: ‘Ubiquitous fractional order controls?’, Proceedings of the Second IFAC Workshop on Fractional Differentiation and Its Applications, Porto Portugal, 2006.
    6. 6)
      • 6. Torvik, P.J., Bagley, R.L.: ‘On the appearance of the fractional derivative in the behavior of real materials’, Trans. ASME E J. Appl. Mech., 1984, 51, (2), pp. 294298.
    7. 7)
      • 7. Baranwal, V.K., Pandey, R.K., Tripathi, M.P., et al.: ‘An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method’, Commun. Nonlin. Sci. Numer. Simul., 2012, 17, (10), pp. 39063921.
    8. 8)
      • 8. Vlad, M.O., Ross, J.: ‘Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition’, Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 2002, 66, (6), pp. 061908.
    9. 9)
      • 9. Saxena, R.K., Mathai, A.M., Haubold, H.J.: ‘Fractional reaction-diffusion equations’, Astrophys. Space Sci., 2006, 305, (3), pp. 289296.
    10. 10)
      • 10. Henry, B.I., Langlands, T.A., Wearne, S.L.: ‘Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations’, Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 2006, 74, (3), p. 031116.
    11. 11)
      • 11. Baeumer, B., Kovács, M., Meerschaert, M.M.: ‘Numerical solutions for fractional reaction-diffusion equations’, Comput. Math. Appl., 2008, 55, (10), pp. 22122226.
    12. 12)
      • 12. Podlubny, I.: ‘Fractional-order systems and PI λD μ-controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214.
    13. 13)
      • 13. Liu, W.: ‘Boundary feedback stabilization of an unstable heat equation’, SIAM J. Control Optim., 2003, 42, (3), pp. 10331043.
    14. 14)
      • 14. Smyshlyaev, A., Krstic, M.: ‘Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations’, IEEE Trans. Autom. Control, 2004, 49, (12), pp. 21852202.
    15. 15)
      • 15. Murio, D.A.: ‘Implicit finite difference approximation for time fractional diffusion equations’, Comput. Math. Appl., 2008, 56, (4), pp. 11381145.
    16. 16)
      • 16. Gafiychuk, V., Datsko, B.: ‘Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems’, Comput. Math. Appl., 2010, 59, (3), pp. 11011107.
    17. 17)
      • 17. Liang, J., Chen, Y., Fullmer, R.: ‘Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations’, Nonlinear Dyn., 2004, 38, (1), pp. 339354.
    18. 18)
      • 18. Balogh, A., Krstic, M.: ‘Infinite dimensional backstepping-style feedback transformations for a heat equation with an arbitrary level of instability’, Eur. J. Control, 2002, 8, (2), pp. 165175.
    19. 19)
      • 19. Balogh, A., Krstic, M.: ‘Stability of partial difference equations governing control gains in infinite-dimensional backstepping’, Syst. Control Lett., 2004, 51, (2), pp. 151164.
    20. 20)
      • 20. Bošković, D.M., Krstić, M.: ‘Backstepping control of chemical tubular reactors’, Comput. Chem. Eng., 2002, 26, (7-8), pp. 10771085.
    21. 21)
      • 21. Bošković, D.M., Krstić, M.: ‘Nonlinear stabilization of a thermal convection loop by state feedback’, Automatica, 2001, 37, (12), pp. 20332040.
    22. 22)
      • 22. Krstic, M., Smyshlyaev, A.: ‘Boundary control of PDEs: a course on backstepping designs’ (Siam, 2008).
    23. 23)
      • 23. Liu, W., Krstić, M.: ‘Backstepping boundary control of Burgers’ equation with actuator dynamics', Syst. Control Lett., 2000, 41, (4), pp. 291303.
    24. 24)
      • 24. Ding, D., Qi, D., Wang, Q.: ‘Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems’, IET Control Theory Appl., 2015, 9, (5), pp. 681690.
    25. 25)
      • 25. Wang, Q., Zhang, J., Ding, D., et al.: ‘Adaptive Mittag–Leffler stabilization of a class of fractional order uncertain nonlinear systems’, Asian J. Control, 2016, 18, (6), pp. 23432351.
    26. 26)
      • 26. Ding, D., Qi, D., Meng, Y., et al.: ‘Adaptive Mittag–Leffler stabilization of commensurate fractional-order nonlinear systems’. Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, California, USA, 2014, pp. 69206926.
    27. 27)
      • 27. Ge, F., Chen, Y.Q., Kou, C.: ‘Boundary feedback stabilisation for the time fractional-order anomalous diffusion system’, IET Control Theory Appl., 2016, 10, (11), pp. 12501257.
    28. 28)
      • 28. Meurer, T., Kugi, A.: ‘Tracking control for boundary controlled parabolic PDEs with varying parameters: combining backstepping and differential flatness’, Automatica, 2009, 45, (5), pp. 11821194.
    29. 29)
      • 29. Ding, X.L., Jiang, Y.L.: ‘Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions’, Nonlin. Anal. Real World Appl., 2013, 14, (2), pp. 10261033.
    30. 30)
      • 30. Payne, L.E., Philippin, G.A.: ‘Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions’, Appl. Anal., 2012, 91, (12), pp. 22452256.
    31. 31)
      • 31. Li, H., Cao, J., Li, C.: ‘High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III)’, J. Comput. Appl. Math., 2016, 299, pp. 159175.
    32. 32)
      • 32. Cao, J., Li, C., Chen, Y.Q.: ‘High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)’, Fract. Calculus Appl. Anal., 2015, 18, (3), pp. 735761.
    33. 33)
      • 33. Adams, R.A.: ‘Sobolev spaces’ (Academic Press, 1975).
    34. 34)
      • 34. Matignon, D.: ‘Stability results for fractional differential equations with applications to control processing’, Comput. Eng. Syst. Appl., 1996, 2, pp. 963968.
    35. 35)
      • 35. Li, Y., Chen, Y., Podlubny, I.: ‘Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability’, Comput. Math. Appl., 2010, 59, (5), pp. 18101821.
    36. 36)
      • 36. Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, (8), pp. 19651969.
    37. 37)
      • 37. Li, C., Wang, J., Lu, J., et al.: ‘Observer-based stabilisation of a class of fractional order non-linear systems for 0<α<2 case’, IET Control Theory Applic., 2014, 8, (13), pp. 12381246.
    38. 38)
      • 38. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.
    39. 39)
      • 39. Trigeassou, J.C., Maamri, N., Sabatier, J., et al.: ‘A Lyapunov approach to the stability of fractional differential equations’, Analog Integr. Circuits Signal Process., 2011, 91, pp. 437445.
    40. 40)
      • 40. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, 1999).
    41. 41)
      • 41. Miller, K.S., Samko, S.G.: ‘Completely monotonic functions’, Integral Transf Special Funct., 2001, 12, (4), pp. 389402.
    42. 42)
      • 42. Boskovic, D.M., Krstic, M., Liu, W.: ‘Boundary control of an unstable heat equation via measurement of domain-averaged temperature’, IEEE Trans. Autom. Control, 2001, 46, (12), pp. 20222028.
    43. 43)
      • 43. Tikhonov, A.N., Samarskii, A.A.: ‘Equations of mathematical physics’ (E. Mellen, New York, 2000).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0227
Loading

Related content

content/journals/10.1049/iet-cta.2017.0227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address