© The Institution of Engineering and Technology
The main purpose of this study is to present a simple design method to synthesise the adaptive robust controllers for a class of uncertain strictfeedback nonlinear systems with delayed state perturbations and external disturbances. In this study, such a simple design method is presented so that (i) the presented design method is easy to understand for the system designers; (ii) it is not necessary to know any information on the upper bound functions of nonlinear delayed state perturbations and the nonlinear functions due to the derivatives of the fictitious control functions to construct some state feedback control schemes; and (iii) the resulting adaptive robust control schemes are simple and easy to implement in practical engineering control problems. The adaptive robust controllers synthesised by the presented design method have a rather simple structure, and can guarantee the uniform exponential boundedness of the considered uncertain strictfeedback nonlinear timedelay systems. A numerical example is provided to illustrate the authors' simple design procedure and the corresponding simulations are made to demonstrate the validity of the theoretical results.
References


1)

1. Cheres, E., Gutman, S., Palmor, Z.: ‘Stabilization of uncertain dynamic systems including state delay’, IEEE Trans. Autom. Control, 1989, AC–34, pp. 1199–1203.

2)

2. Wu, H., Mizukami, K.: ‘Linear and nonlinear stabilizing continuous controllers of uncertain dynamical systems including state delay’, IEEE Trans. Autom. Control, 1996, AC–41, pp. 116–121.

3)

3. Oucheriah, S.: ‘Decentralized stabilization of large scale systems with multiple delays in the interconnections’, Int. J. Control, 2000, 73, pp. 1213–1223.

4)

4. Niculescu, S.I.: ‘Delay effects on stability: a robust control approach’ (Springer, Berlin, 2001).

5)

5. Lin, C., Wang, Q.G., Lee, T.H.: ‘Stabilization of uncertain fuzzy timedelay systems via variable structure control approach’, IEEE Trans. Fuzzy Syst., 2005, 13, pp. 787–798.

6)

6. Niu, Y., Ho, D.W.C., Lam, J.: ‘Robust integral sliding mode control for uncertain stochastic systems with timevarying delay’, Bul. Inst. Politeh. ‘Gheorghe GheorghiuDej’ Bucur. Ser. Autom., 2005, 41, pp. 873–880.

7)

7. Wu, H.: ‘Adaptive stabilizing state feedback controllers of uncertain dynamical systems with multiple time delays’, IEEE Trans. Autom. Control, 2000, AC–45, pp. 1697–1701.

8)

8. Hua, C.C., Wang, Q.G., Guan, X.P.: ‘Adaptive tracking controller design of nonlinear systems with time delays and unknown deadzone input’, IEEE Trans. Autom. Control, 2008, AC–53, pp. 1753–1759.

9)

9. Wu, H.: ‘Adaptive robust control of uncertain nonlinear systems with nonlinear delayed state perturbations’, Automatica, 2009, 45, pp. 1979–1984.

10)

10. Wu, H.: ‘Adaptive robust stabilisation for a class of uncertain nonlinear timedelay dynamical systems’, Int. J. Syst. Sci., 2013, 44, pp. 371–383.

11)

11. Zhang, Z., Xu, S., Zhang, B.: ‘Exact tracking control of nonlinear systems with time delays and deadzone input’, Automatica, 2015, 52, pp. 272–276.

12)

12. Wu, H.: ‘Decentralised adaptive robust control of uncertain largescale nonlinear dynamical systems with timevarying delays’, IET Control Theory Appl., 2012, 6, pp. 629–640.

13)

13. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: ‘Systematic design of adaptive controllers for feedback linearizable systems’, IEEE Trans. Autom. Control, 1991, AC–36, pp. 1241–1253.

14)

14. Nguang, S.K.: ‘Robust stabilization of a class of timedelay nonlinear systems’, IEEE Trans. Autom. Control, 2000, AC–45, pp. 756–762.

15)

15. Fu, Y., Tian, Z., Shi, S.: ‘State feedback stabilization for a class of stochastic timedelay nonlinear systems’, IEEE Trans. Autom. Control, 2003, AC–48, pp. 282–286.

16)

16. Hua, C., Guan, X., Shi, P.: ‘Robust backstepping control for a class of time delayed systems’, IEEE Trans. Autom. Control, 2005, AC–50, pp. 894–899.

17)

17. Choi, Y.H., Yoo, S.J.: ‘Simple adaptive outputfeedback control of nonlinear strictfeedback timedelay systems’, IET Control Theory Appl., 2016, 10, pp. 58–66.

18)

18. Chen, B., Liu, X., Liu, K., et al: ‘Direct adaptive fuzzy control of nonlinear strictfeedback systems’, Automatica, 2009, 45, pp. 1530–1535.

19)

19. Wang, H., Shi, P., Li, H., et al: ‘Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties’, IEEE Trans. Cybern., 2016, ().

20)

20. Wang, H., Sun, W., Liu, P.X.: ‘Adaptive intelligent control of nonaffine nonlinear timedelay systems with dynamic uncertainties’, IEEE Trans. Syst. Man Cybern. Syst., 2016, ().

21)

21. Wang, H., Liu, X., Liu, K.: ‘Adaptive fuzzy tracking control for a class of purefeedback stochastic nonlinear systems with nonlower triangular structure’, Fuzzy Sets Syst., 2016, 302, pp. 101–120.

22)

22. Swaroop, D., Hedrick, J.K., Yip, P.P., et al: ‘Dynamic surface control for a class of nonlinear systems’, IEEE Trans. Autom. Control, 2000, AC–45, pp. 1893–1899.

23)

23. Wu, H.: ‘A class of adaptive robust state observers with simpler structure for uncertain nonlinear systems with timevarying delays’, IET Control Theory Appl., 2013, 7, pp. 218–227.

24)

24. Wu, H., Deng, M.: ‘Robust adaptive control scheme for uncertain nonlinear model reference adaptive control systems with timevarying delays’, IET Control Theory Appl., 2015, 9, pp. 1181–1189.

25)

25. Wu, H.: ‘Adaptive robust stabilisation of uncertain nonlinear dynamical systems: an improved backstepping approach’, Int. J. Control, 2017, .
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0220
Related content
content/journals/10.1049/ietcta.2017.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6