access icon free Data-driven adaptive fault-tolerant control for a class of multiple-input–multiple-output linear discrete-time systems

In this study, a data-driven adaptive fault-tolerant control (FTC) scheme is proposed for a class of linear discrete-time multiple-input and multiple-output systems. With the unknown system model, the nominal controller with an observer-based residual generator is first developed based on the system input and output (I/O) data in the fault-free case; in the faulty case, the fault tolerant compensation mechanism is designed based on the model-free adaptive control method. Compared to the existing data-driven FTC methods, the number of the fault-tolerant tuning parameters in this study is determined by the system I/O dimensions instead of arbitrarily defined, which may lead to fewer tuning parameters with satisfactory performance. The effectiveness of the proposed scheme is illustrated by two simulation examples.

Inspec keywords: linear systems; control system synthesis; compensation; adaptive control; observers; MIMO systems; fault tolerant control; discrete time systems

Other keywords: multiple-input–multiple-output linear discrete-time systems; data-driven adaptive fault-tolerant control; fault-free case; system input and output data; FTC scheme; system I/O dimensions; observer-based residual generator; I/O data; data-driven FTC methods; model-free adaptive control method; fault tolerant compensation mechanism; fault-tolerant tuning parameters; nominal controller

Subjects: Control system analysis and synthesis methods; Discrete control systems; Self-adjusting control systems; Simulation, modelling and identification; Linear control systems; Multivariable control systems

References

    1. 1)
      • 35. Gershgorin, S.: ‘Uber die abgrenzung der eignenwerte einer matrix’, Izv. Akad. Nauk. USSR Otd. Fiz. Mat. Nauk, 1931, 7, (6), pp. 749754.
    2. 2)
      • 23. Zhou, K., Ren, Z.: ‘A new controller architecture for high performance, robust, and fault-tolerant control’, IEEE Trans. Autom. Control, 2001, 46, (10), pp. 16131618.
    3. 3)
      • 21. Stoustrup, J., Grimble, M., Niemann, H.: ‘Design of integrated systems for the control and detection of actuator/sensor faults’, Sens. Rev., 1997, 17, (2), pp. 138149.
    4. 4)
      • 9. Wang, J.S., Yang, G.H.: ‘Data-driven output-feedback fault-tolerant L2 control of unknown dynamic systems’, ISA Trans., 2016, 63, pp. 182195.
    5. 5)
      • 13. Hou, Z., Han, C., Huang, W.: ‘The model-free learning adaptive control of a class of MISO nonlinear discrete-time systems’. Proc. Fifth IFAC Symp. Low Cost Automation, Shenyang, 1998, pp. 227232.
    6. 6)
      • 16. Hjalmarsson, H., Gevers, M, Gunnarsson, S., et al.: ‘Iterative feedback tuning: theory and applications’, IEEE Control Syst., 2010, 18, (4), pp. 2641.
    7. 7)
      • 24. Campos-Delgado, D., Martinez-Martinez, S., Zhou, K.: ‘Integrated fault-tolerant scheme for a DC speed drive’, IEEE-ASME Trans. Mechatronics, 2005, 10, (4), pp. 419427.
    8. 8)
      • 3. Witczak, M., Buciakowski, M., Aubrun, C.: ‘Predictive actuator fault-tolerant control under ellipsoidal bounding’, Int. J. Adapt. Control, 2016, 30, (2), pp. 375392.
    9. 9)
      • 1. Ding, S.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer, 2013).
    10. 10)
      • 22. Ding, S., Wang, Y., Yin, S., et al.: ‘Data-driven design of fault-tolerant control systems’. Proc. Eighth IFAC Symp. Fault Detection, Supervision and Safeprocess, Mexico City, 2012, pp. 13231328.
    11. 11)
      • 30. Zhou, K., Doyle, J., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1996).
    12. 12)
      • 26. Li, Z., Yang, G.H.: ‘Correlation-based fault-tolerant controller design for MIMO systems under the Youla parameterisation’, Int. J. Syst. Sci., 2016, 48, (6), pp. 11621172.
    13. 13)
      • 2. Witczak, M., Puig, V., Oca, S.: ‘A fault-tolerant control strategy for non-linear discrete-time systems: application to the twin-rotor system’, Int. J. Control, 2013, 86, (10), pp. 17881799.
    14. 14)
      • 7. Shen, Q., Jiang, B., Shi, P.: ‘Adaptive fault tolerant control against actuator faults’, Int. J. Adapt. Control, 2017, 31, (2), pp. 147162.
    15. 15)
      • 19. Zhang, B., Zhang, W.: ‘Adaptive predictive functional control of a class of nonlinear systems’, ISA Trans., 2006, 45, (2), pp. 175183.
    16. 16)
      • 28. Horn, R., Diversi, R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, 1990).
    17. 17)
      • 10. Ding, S.: ‘Data-driven design of fault-tolerant control systems’. Fault detection, supervision and safety of technical processes, 2012, pp. 13231328.
    18. 18)
      • 32. Ding, S.: ‘Data-driven design of fault diagnosis and fault-tolerant control systems’ (Springer, London, 2014).
    19. 19)
      • 29. Mercere, G., Bako, L.: ‘Parameterization and identification of multivariable state-space systems: a canonical approach’, Automatica, 2011, 47, (8), pp. 15471555.
    20. 20)
      • 11. Hou, Z.: ‘The parameter identification, adaptive control and model-free learning adaptive control for nonlinear systems’. PhD dissertation, Northeastern University, 1994.
    21. 21)
      • 18. Tan, K., Lee, T., Huang, S., et al.: ‘Adaptive-predictive control of a class of a class of SISO nonlinear systems’, Dyn. Control, 2001, 11, (2), pp. 151174.
    22. 22)
      • 31. Ding, S., Yang, G., Zhang, P., et al.: ‘Feedback control structures, embedded residual signals, and feedback control schemes with an integrated residual access’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 352367.
    23. 23)
      • 8. Wang, J.S., Yang, G.H.: ‘Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 70297039.
    24. 24)
      • 34. Hou, Z., Jin, S.: ‘A novel data-driven control approach for a class of discrete-time nonlinear systems’, IEEE Trans. Control Syst. Technol., 2011, 19, (6), pp. 15491558.
    25. 25)
      • 17. Coelho, L., Coelho, A.: ‘Model-free adaptive control optimization using a chaotic particle swarm approach’, Chaos Solitons Fractals, 2009, 41, (4), pp. 20012009.
    26. 26)
      • 27. Yin, S., Luo, H., Ding, S.: ‘Real-time implementation of fault-tolerant control systems with performance optimization’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 24022411.
    27. 27)
      • 6. Shen, Q., Shi, P., Jiang, B.: ‘Fault diagnosis and fault-tolerant control based on adaptive control approach’ (Springer International Publishing, 2017).
    28. 28)
      • 33. Hou, Z., Jin, S.: ‘Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems’, IEEE Trans. Neural Netw. Learn. Syst., 2011, 22, (12), pp. 21732188.
    29. 29)
      • 25. Wang, Y., Ma, G: ‘Fault-tolerant control of linear multivariable controllers using iterative feedback tuning’, Int. J. Adapt. Control, 2015, 29, (4), pp. 457472.
    30. 30)
      • 4. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decis., 2014, 1, (4), pp. 299316.
    31. 31)
      • 14. Campi, M., Savaresi, S.: ‘Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach’, IEEE Trans. Autom. Control, 2006, 51, (1), pp. 1427.
    32. 32)
      • 12. Hou, Z., Huang, W.: ‘The model-free learning adaptive control of a class of SISO nonlinear systems’. Proc. American Control Conf., Albuquerque, 1997, pp. 343344.
    33. 33)
      • 20. Ding, S.: ‘Integrated design of feedback controllers and fault detectors’, Annu. Rev. Control, 2009, 33, (2), pp. 124135.
    34. 34)
      • 15. Karimi, A., Miskovic, L., Bonvin, D.: ‘Iterative correlation-based controller tuning’, Int. J. Adapt. Control, 2004, 18, (8), pp. 645664.
    35. 35)
      • 5. Mrugalski, M., Luzar, M., Pazera, M., et al.: ‘Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system’, ISA Trans., 2016, 61, pp. 318328.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0214
Loading

Related content

content/journals/10.1049/iet-cta.2017.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading