http://iet.metastore.ingenta.com
1887

Data-driven adaptive fault-tolerant control for a class of multiple-input–multiple-output linear discrete-time systems

Data-driven adaptive fault-tolerant control for a class of multiple-input–multiple-output linear discrete-time systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a data-driven adaptive fault-tolerant control (FTC) scheme is proposed for a class of linear discrete-time multiple-input and multiple-output systems. With the unknown system model, the nominal controller with an observer-based residual generator is first developed based on the system input and output (I/O) data in the fault-free case; in the faulty case, the fault tolerant compensation mechanism is designed based on the model-free adaptive control method. Compared to the existing data-driven FTC methods, the number of the fault-tolerant tuning parameters in this study is determined by the system I/O dimensions instead of arbitrarily defined, which may lead to fewer tuning parameters with satisfactory performance. The effectiveness of the proposed scheme is illustrated by two simulation examples.

References

    1. 1)
      • 1. Ding, S.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer, 2013).
    2. 2)
      • 2. Witczak, M., Puig, V., Oca, S.: ‘A fault-tolerant control strategy for non-linear discrete-time systems: application to the twin-rotor system’, Int. J. Control, 2013, 86, (10), pp. 17881799.
    3. 3)
      • 3. Witczak, M., Buciakowski, M., Aubrun, C.: ‘Predictive actuator fault-tolerant control under ellipsoidal bounding’, Int. J. Adapt. Control, 2016, 30, (2), pp. 375392.
    4. 4)
      • 4. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decis., 2014, 1, (4), pp. 299316.
    5. 5)
      • 5. Mrugalski, M., Luzar, M., Pazera, M., et al.: ‘Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system’, ISA Trans., 2016, 61, pp. 318328.
    6. 6)
      • 6. Shen, Q., Shi, P., Jiang, B.: ‘Fault diagnosis and fault-tolerant control based on adaptive control approach’ (Springer International Publishing, 2017).
    7. 7)
      • 7. Shen, Q., Jiang, B., Shi, P.: ‘Adaptive fault tolerant control against actuator faults’, Int. J. Adapt. Control, 2017, 31, (2), pp. 147162.
    8. 8)
      • 8. Wang, J.S., Yang, G.H.: ‘Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 70297039.
    9. 9)
      • 9. Wang, J.S., Yang, G.H.: ‘Data-driven output-feedback fault-tolerant L2 control of unknown dynamic systems’, ISA Trans., 2016, 63, pp. 182195.
    10. 10)
      • 10. Ding, S.: ‘Data-driven design of fault-tolerant control systems’. Fault detection, supervision and safety of technical processes, 2012, pp. 13231328.
    11. 11)
      • 11. Hou, Z.: ‘The parameter identification, adaptive control and model-free learning adaptive control for nonlinear systems’. PhD dissertation, Northeastern University, 1994.
    12. 12)
      • 12. Hou, Z., Huang, W.: ‘The model-free learning adaptive control of a class of SISO nonlinear systems’. Proc. American Control Conf., Albuquerque, 1997, pp. 343344.
    13. 13)
      • 13. Hou, Z., Han, C., Huang, W.: ‘The model-free learning adaptive control of a class of MISO nonlinear discrete-time systems’. Proc. Fifth IFAC Symp. Low Cost Automation, Shenyang, 1998, pp. 227232.
    14. 14)
      • 14. Campi, M., Savaresi, S.: ‘Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach’, IEEE Trans. Autom. Control, 2006, 51, (1), pp. 1427.
    15. 15)
      • 15. Karimi, A., Miskovic, L., Bonvin, D.: ‘Iterative correlation-based controller tuning’, Int. J. Adapt. Control, 2004, 18, (8), pp. 645664.
    16. 16)
      • 16. Hjalmarsson, H., Gevers, M, Gunnarsson, S., et al.: ‘Iterative feedback tuning: theory and applications’, IEEE Control Syst., 2010, 18, (4), pp. 2641.
    17. 17)
      • 17. Coelho, L., Coelho, A.: ‘Model-free adaptive control optimization using a chaotic particle swarm approach’, Chaos Solitons Fractals, 2009, 41, (4), pp. 20012009.
    18. 18)
      • 18. Tan, K., Lee, T., Huang, S., et al.: ‘Adaptive-predictive control of a class of a class of SISO nonlinear systems’, Dyn. Control, 2001, 11, (2), pp. 151174.
    19. 19)
      • 19. Zhang, B., Zhang, W.: ‘Adaptive predictive functional control of a class of nonlinear systems’, ISA Trans., 2006, 45, (2), pp. 175183.
    20. 20)
      • 20. Ding, S.: ‘Integrated design of feedback controllers and fault detectors’, Annu. Rev. Control, 2009, 33, (2), pp. 124135.
    21. 21)
      • 21. Stoustrup, J., Grimble, M., Niemann, H.: ‘Design of integrated systems for the control and detection of actuator/sensor faults’, Sens. Rev., 1997, 17, (2), pp. 138149.
    22. 22)
      • 22. Ding, S., Wang, Y., Yin, S., et al.: ‘Data-driven design of fault-tolerant control systems’. Proc. Eighth IFAC Symp. Fault Detection, Supervision and Safeprocess, Mexico City, 2012, pp. 13231328.
    23. 23)
      • 23. Zhou, K., Ren, Z.: ‘A new controller architecture for high performance, robust, and fault-tolerant control’, IEEE Trans. Autom. Control, 2001, 46, (10), pp. 16131618.
    24. 24)
      • 24. Campos-Delgado, D., Martinez-Martinez, S., Zhou, K.: ‘Integrated fault-tolerant scheme for a DC speed drive’, IEEE-ASME Trans. Mechatronics, 2005, 10, (4), pp. 419427.
    25. 25)
      • 25. Wang, Y., Ma, G: ‘Fault-tolerant control of linear multivariable controllers using iterative feedback tuning’, Int. J. Adapt. Control, 2015, 29, (4), pp. 457472.
    26. 26)
      • 26. Li, Z., Yang, G.H.: ‘Correlation-based fault-tolerant controller design for MIMO systems under the Youla parameterisation’, Int. J. Syst. Sci., 2016, 48, (6), pp. 11621172.
    27. 27)
      • 27. Yin, S., Luo, H., Ding, S.: ‘Real-time implementation of fault-tolerant control systems with performance optimization’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 24022411.
    28. 28)
      • 28. Horn, R., Diversi, R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, 1990).
    29. 29)
      • 29. Mercere, G., Bako, L.: ‘Parameterization and identification of multivariable state-space systems: a canonical approach’, Automatica, 2011, 47, (8), pp. 15471555.
    30. 30)
      • 30. Zhou, K., Doyle, J., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1996).
    31. 31)
      • 31. Ding, S., Yang, G., Zhang, P., et al.: ‘Feedback control structures, embedded residual signals, and feedback control schemes with an integrated residual access’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 352367.
    32. 32)
      • 32. Ding, S.: ‘Data-driven design of fault diagnosis and fault-tolerant control systems’ (Springer, London, 2014).
    33. 33)
      • 33. Hou, Z., Jin, S.: ‘Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems’, IEEE Trans. Neural Netw. Learn. Syst., 2011, 22, (12), pp. 21732188.
    34. 34)
      • 34. Hou, Z., Jin, S.: ‘A novel data-driven control approach for a class of discrete-time nonlinear systems’, IEEE Trans. Control Syst. Technol., 2011, 19, (6), pp. 15491558.
    35. 35)
      • 35. Gershgorin, S.: ‘Uber die abgrenzung der eignenwerte einer matrix’, Izv. Akad. Nauk. USSR Otd. Fiz. Mat. Nauk, 1931, 7, (6), pp. 749754.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0214
Loading

Related content

content/journals/10.1049/iet-cta.2017.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address