access icon free Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches

This study addresses the problem of quasi-synchronisation of fractional-order memristor-based neural networks (FMNNs) with time delay in the presence of parameter mismatches. Under the framework of fractional-order differential inclusions and set-valued maps, quasi-synchronisation of delayed FMNNs is discussed and quasi-synchronisation criteria are established by means of constructing suitable Lyapunov function, together with introducing some fractional-order differential inequalities. A new lemma on the estimate of Mittag–Leffler function is derived first, which extends the application of Mittag–Leffler function and plays a key role in the estimate of synchronisation error bound. Then, linear state feedback combined with delayed state feedback control law is designed, which guarantees that for a predetermined synchronisation error bound, quasi-synchronisation of two FMNNs with mismatched parameters will be achieved provided that the feedback gains satisfy the newly-proposed criteria. The obtained results extend and improve some previous published works on synchronisation of FMNNs. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.

Inspec keywords: neural chips; control system synthesis; state feedback; synchronisation; neurocontrollers; delay systems; Lyapunov methods; linear systems; memristor circuits

Other keywords: fractional-order differential inequalities; synchronisation error bound estimation; delayed FMNNs; linear state feedback; Mittag–Leffler function; parameter mismatches; Lyapunov function; fractional-order differential inclusions; quasisynchronisation criteria; delayed state feedback control law design; fractional-order memristor-based neural networks; set-valued maps; time delay

Subjects: Linear control systems; Distributed parameter control systems; Neurocontrol; Stability in control theory; Control system analysis and synthesis methods; Neural nets (circuit implementations)

References

    1. 1)
      • 49. Zhang, S., Yu, Y., Wang, H.: ‘Mittag–Leffler stability of fractional-order Hopfield neural networks’, Nonlinear Anal. Hybrid Syst., 2015, 16, pp. 104121.
    2. 2)
      • 14. Yu, J., Hu, C., Jiang, H., et al: ‘Projective synchronization for fractional neural networks’, Neural Net., 2014, 49, pp. 8795.
    3. 3)
      • 37. Leung, H., Zhu, Z.: ‘Time-varying synchronization of chaotic systems in the presence of system mismatch’, Phys. Rev. E, 2004, 69, (2), p. 026201.
    4. 4)
      • 41. He, W., Qian, F., Cao, J., et al: ‘Impulsive synchronization of two nonidentical chaotic systems with time-varying delay’, Phys. Lett. A, 2011, 375, (3), pp. 498504.
    5. 5)
      • 7. Monje, C.A., Chen, Y., Vinagre, B.M., et al: ‘Fractional-order systems and control: fundamentals and applications’ (Springer, 2010).
    6. 6)
      • 20. Wu, A., Zeng, Z.: ‘Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays’, Neural Net., 2012, 36, pp. 110.
    7. 7)
      • 32. Chen, L., Wu, R., Cao, J., et al: ‘Stability and synchronization of memristor-based fractional-order delayed neural networks’, Neural Net., 2015, 71, pp. 3744.
    8. 8)
      • 1. Matsuoka, K., Ohoya, M., Kawamoto, M.: ‘A neural net for blind separation of nonstationary signals’, Neural Net., 1995, 8, (3), pp. 411419.
    9. 9)
      • 13. Chen, L., Chai, Y., Wu, R., et al: ‘Dynamic analysis of a class of fractional-order neural networks with delay’, Neurocomputing, 2013, 111, pp. 190194.
    10. 10)
      • 46. Podlubny, I: ‘Fractional differential equations’ (Academic press, 1998).
    11. 11)
      • 26. Li, N., Cao, J.: ‘New synchronization criteria for memristor-based networks: adaptive control and feedback control schemes’, Neural Net., 2015, 61, pp. 19.
    12. 12)
      • 21. Wu, A., Zeng, Z.: ‘Exponential stabilization of memristive neural networks with time delays’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (12), pp. 19191929.
    13. 13)
      • 33. Bao, H., Cao, J.: ‘Projective synchronization of fractional-order memristor-based neural networks’, Neural Net., 2015, 63, pp. 19.
    14. 14)
      • 10. Huang, X., Zhao, Z., Wang, Z., et al: ‘Chaos and hyperchaos in fractional-order cellular neural networks’, Neurocomputing, 2012, 94, pp. 1321.
    15. 15)
      • 6. Hilfer, R.: ‘Applications of fractional calculus in physics’ (World Scientific, Singapore, 2000).
    16. 16)
      • 36. Astakhov, V., Hasler, M., Kapitaniak, T., et al: ‘Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems’, Phys. Rev. E, 1998, 58, (5), p. 5620.
    17. 17)
      • 29. Guo, Z., Wang, J., Yan, Z.: ‘Global exponential synchronization of two memristor-based recurrent neural networks with time delays via static or dynamic coupling’, IEEE Trans. Syst. Man Cybern. Syst., 2015, 45, (2), pp. 235249.
    18. 18)
      • 35. Velmurugan, G., Rakkiyappan, R., Cao, J.: ‘Finite-time synchronization of fractional-order memristor-based neural networks with time delays’, Neural Net., 2016, 73, pp. 3646.
    19. 19)
      • 17. Strukov, D.B., Snider, G.S., Stewart, D.R., et al: ‘The missing memristor found’, Nature, 2008, 453, (7191), pp. 8083.
    20. 20)
      • 22. Wen, S., Zeng, Z., Huang, T.: ‘Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays’, Neurocomputing, 2012, 97, pp. 233240.
    21. 21)
      • 8. Abdelouahab, M.S., Lozi, R., Chua, L.: ‘Memfractance: a mathematical paradigm for circuit elements with memory’, Int. J. Bifurcation Chaos, 2014, 24, (09), p. 1430023.
    22. 22)
      • 52. Aubin, J.P., Cellina, A.: ‘Differential inclusions: set-valued maps and viability theory’ (Springer, 2012).
    23. 23)
      • 42. He, W., Qian, F., Han, Q.L., et al: ‘Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (10), pp. 15511563.
    24. 24)
      • 19. Lundstrom, B.N., Higgs, M.H., Spain, W.J., et al: ‘Fractional differentiation by neocortical pyramidal neurons’, Nat. Neurosci., 2008, 11, (11), pp. 13351342.
    25. 25)
      • 3. Abe, S., Kawakami, J., Hirasawa, K.: ‘Solving inequality constrained combinatorial optimization problems by the Hopfield neural networks’, Neural Net., 1992, 5, (4), pp. 663670.
    26. 26)
      • 28. Li, R., Cao, J.: ‘Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term’, Appl. Math. Comput., 2016, 278, pp. 5469.
    27. 27)
      • 2. Crounse, K.R., Chua, L.O.: ‘Methods for image processing and pattern formation in cellular neural networks: a tutorial’, IEEE Trans. Circuits Syst. I, Fund. Theory Appl., 1995, 42, (10), pp. 583601.
    28. 28)
      • 16. Chua, L.: ‘Memristor – the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    29. 29)
      • 48. Filippov, A.F.: ‘Differential equations with discontinuous righthand sides: control systems’ (Springer, 2013).
    30. 30)
      • 38. Li, C., Chen, G., Liao, X., et al: ‘Chaos quasisynchronization induced by impulses with parameter mismatches’, Chaos, 2006, 16, (2), p. 023102.
    31. 31)
      • 9. Westerlund, S., Ekstam, L.: ‘Capacitor theory’, IEEE Trans. Dielectr. Electr. Insul., 1994, 1, (5), pp. 826839.
    32. 32)
      • 50. Wu, A., Zeng, Z.: ‘Global Mittag–Leffler stabilization of fractional-order memristive neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (1), pp. 206217.
    33. 33)
      • 51. Chua, L.: ‘Resistance switching memories are memristors’, Appl. Phys. A, 2011, 102, (4), pp. 765783.
    34. 34)
      • 44. Huang, X., Lam, J., Cao, J., et al: ‘Robust synchronization criteria for recurrent neural networks via linear feedback’, Int. J. Bifurcation Chaos, 2007, 17, (08), pp. 27232738.
    35. 35)
      • 45. Liu, X., Chen, T., Cao, J., et al: ‘Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches’, Neural Net., 2011, 24, (10), pp. 10131021.
    36. 36)
      • 39. Huang, T., Li, C., Liao, X.: ‘Synchronization of a class of coupled chaotic delayed systems with parameter mismatch’, Chaos, 2007, 17, (3), p. 033121.
    37. 37)
      • 4. Bishop, C.M.: ‘Neural networks for pattern recognition’ (Oxford University Press, 1995).
    38. 38)
      • 30. Velmurugan, G., Rakkiyappan, R.: ‘Hybrid projective synchronization of fractional-order memristor-based neural networks with time delays’, Nonlinear Dyn., 2016, 83, (1-2), pp. 419432.
    39. 39)
      • 27. Cao, J., Li, R.: ‘Fixed-time synchronization of delayed memristor-based recurrent neural networks’, Sci. Chin. Inf. Sci., 2017, 60, (3), p. 032201.
    40. 40)
      • 43. He, W., Qian, F., Lam, J., et al: ‘Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design’, Automatica, 2015, 62, pp. 249262.
    41. 41)
      • 18. Itoh, M., Chua, L.O.: ‘Memristor cellular automata and memristor discrete-time cellular neural networks’, Int. J. Bifurcation Chaos, 2009, 19, (11), pp. 36053656.
    42. 42)
      • 5. Liu, D., Michel, A.N.: ‘Cellular neural networks for associative memories’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 1993, 40, (2), pp. 119121.
    43. 43)
      • 25. Yang, X., Cao, J., Yu, W.: ‘Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays’, Cognit. Neurodyn., 2014, 8, (3), pp. 239249.
    44. 44)
      • 11. Yang, H., Jiang, B.: ‘Stability of fractional-order switched non-linear systems’, IET Control Theory Appl., 2016, 10, (8), pp. 965970.
    45. 45)
      • 34. Bao, H., Park, J.H., Cao, J.: ‘Adaptive synchronization of fractional-order memristor-based neural networks with time delay’, Nonlinear Dyn., 2015, 82, (3), pp. 13431354.
    46. 46)
      • 47. Henderson, J., Ouahab, A.: ‘Fractional functional differential inclusions with finite delay’, Nonlinear Anal., 2009, 70, (5), pp. 20912105.
    47. 47)
      • 40. Huang, T., Li, C., Yu, W., et al: ‘Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback’, Nonlinearity, 2009, 22, (3), pp. 569584.
    48. 48)
      • 12. Guo, Y., Ma, B., Chen, L., et al: ‘Adaptive sliding mode control for a class of Caputo type fractional-order interval systems with perturbation’, IET Control Theory Appl., 2016, 11, (1), pp. 5765.
    49. 49)
      • 24. Abdurahman, A., Jiang, H., Teng, Z.: ‘Finite-time synchronization for memristor-based neural networks with time-varying delays’, Neural Net., 2015, 69, pp. 2028.
    50. 50)
      • 23. Wang, W., Li, L., Peng, H., et al: ‘Synchronization control of memristor-based recurrent neural networks with perturbations’, Neural Net., 2014, 53, pp. 814.
    51. 51)
      • 31. Chen, J., Zeng, Z., Jiang, P.: ‘Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks’, Neural Net., 2014, 51, pp. 18.
    52. 52)
      • 15. Ding, Z., Shen, Y.: ‘Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller’, Neural Net., 2016, 76, pp. 97105.
    53. 53)
      • 53. Wang, Z.: ‘A numerical method for delayed fractional-order differential equations’, IMA J. Appl. Math., 2013, 2013, p. 256071.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0196
Loading

Related content

content/journals/10.1049/iet-cta.2017.0196
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading