http://iet.metastore.ingenta.com
1887

Distributed coordinated tracking control of multiple Euler–Lagrange systems by state and output feedback

Distributed coordinated tracking control of multiple Euler–Lagrange systems by state and output feedback

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the distributed state and output feedback coordinated tracking problem for multiple Euler–Lagrange systems with a moving leader in the presence of non-linear uncertainties under a directed topology graph. The authors first design a distributed coordinated tracking control scheme by full-state feedback, where each follower can only share information with its neighbours. Next, the adaptive neural networks are applied to deal with the model uncertainties due to their superior approximation capability. To deal with the absence of velocity sensors, then they propose a distributed output feedback coordinated tracking control law combined with a high-gain observer. The uniform ultimate boundedness of all the state errors can be guaranteed in the sense of Lyapunov stability theory. Furthermore, the leaderless synchronisation problem is solved using the proposed control schemes. Finally, simulation examples are presented to illustrate the feasibility of the theoretical results.

References

    1. 1)
      • 1. Olfati-Saber, R., Fax, A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    2. 2)
      • 2. Bullo, F., Cortes, J., Martinez, S.: ‘Distributed control of robotic networks: a mathematical approach to motion coordination algorithms’ (Princeton University Press, 2009).
    3. 3)
      • 3. Jadbabaie, A., Lin, J., Morse, A.S.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001.
    4. 4)
      • 4. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    5. 5)
      • 5. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    6. 6)
      • 6. Yu, W., Chen, G., Cao, M.: ‘Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems’, Automatica, 2010, 46, (6), pp. 10891095.
    7. 7)
      • 7. Mei, J., Ren, W., Chen, J.: ‘Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph’, IEEE Trans. Autom. Control, 2016, 61, (8), pp. 20192034.
    8. 8)
      • 8. Cao, Y., Ren, W.: ‘Distributed coordinated tracking with reduced interaction via a variable structure approach’, IEEE Trans. Autom. Control, 2012, 57, (1), pp. 3348.
    9. 9)
      • 9. Peng, K., Yang, Y.: ‘Leader–following consensus problem with a varying-velocity leader and time-varying delays’, Phys. A Stat. Mech. Appl., 2009, 388, (388), pp. 193208.
    10. 10)
      • 10. Hong, Y., Chen, G., Bushnell, L.: ‘Distributed observers design for leader–following control of multi-agent networks’, Automatica, 2008, 44, (3), pp. 846850.
    11. 11)
      • 11. Yang, Q., Fang, H., Cao, M., et al: ‘Distributed trajectory tracking control for multiple nonholonomic mobile robots’, IFAC-PapersOnLine, 2016, 49, (4), pp. 3136.
    12. 12)
      • 12. Notarstefano, G., Egerstedt, M., Haque, M.: ‘Containment in leader-follower networks with switching communication topologies’, Automatica, 2011, 47, (5), pp. 10351040.
    13. 13)
      • 13. Ji, M., Ferrari-Trecate, G., Egerstedt, M., et al: ‘Containment control in mobile networks’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 19721975.
    14. 14)
      • 14. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420.
    15. 15)
      • 15. Fang, H., Wei, Y., Chen, J., et al: ‘Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation’, IEEE Trans. Cybern., 2016, 47, (4), pp. 10671077.
    16. 16)
      • 16. Ballard, L., Cao, Y., Ren, W.: ‘Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination’, IET Control Theory Appl., 2010, 4, (5), pp. 806816.
    17. 17)
      • 17. Chopra, N., Spong, M.W.: ‘Passivity-based control of multi-agent systems’ (Springer, 2006).
    18. 18)
      • 18. Hou, Z.G., Cheng, L., Tan, M.: ‘Decentralized robust adaptive control for the multiagent system consensus problem using neural networks’, IEEE Trans. Syst. Man Cybern. B Cybern., 2009, 39, (3), pp. 636647.
    19. 19)
      • 19. Nuno, E., Ortega, R., Basanez, L., et al: ‘Synchronization of networks of nonidentical Euler–Lagrange systems with uncertain parameters and communication delays’, IEEE Trans. Autom. Control, 2011, 56, (4), pp. 935941.
    20. 20)
      • 20. Chung, S.J., Slotine, J.J.E.: ‘Cooperative robot control and concurrent synchronization of Lagrangian systems’, IEEE Trans. Robot., 2009, 25, (3), pp. 686700.
    21. 21)
      • 21. Dong, W.: ‘On consensus algorithms of multiple uncertain mechanical systems with a reference trajectory’, Automatica, 2011, 47, (9), pp. 20232028.
    22. 22)
      • 22. Mei, J., Ren, W., Ma, G.: ‘Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems’, IEEE Trans. Autom. Control, 2011, 56, (6), pp. 14151421.
    23. 23)
      • 23. Cheah, C.C., Hou, S.P., Slotine, J.J.E.: ‘Region-based shape control for a swarm of robots’, Automatica, 2009, 45, (10), pp. 24062411.
    24. 24)
      • 24. Li, J., Ren, W., Xu, S.: ‘Distributed containment control with multiple dynamic leaders for double-integrator dynamics using only position measurements’, IEEE Trans. Autom. Control, 2012, 57, (6), pp. 15531559.
    25. 25)
      • 25. He, W., Qian, F., Lam, J., et al: ‘Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design’, Automatica, 2015, 62, pp. 249262.
    26. 26)
      • 26. Wit, C.C.D., Fixot, N.: ‘Adaptive control of robot manipulators via velocity estimated feedback’, IEEE Trans. Autom. Control, 1992, 37, (8), pp. 12341237.
    27. 27)
      • 27. Abdessameud, A., Tayebi, A.: ‘On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints’, Syst. Control Lett., 2010, 59, (12), pp. 812821.
    28. 28)
      • 28. Lv, Y., Li, Z., Duan, Z., et al: ‘Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input’, Automatica, 2016, 74, pp. 308314.
    29. 29)
      • 29. Yang, Q., Fang, H., Mao, Y., et al: ‘Distributed tracking for networked Euler–Lagrange systems without velocity measurements’, Chin. J. Syst. Eng. Electron., 2014, 25, (4), pp. 671680.
    30. 30)
      • 30. Fang, H., Chen, J., Wang, X.: ‘Distributed observer-based coordination for multiple Lagrangian systems using only position measurements’, IET Control Theory Appl., 2014, 8, pp. 21022114.
    31. 31)
      • 31. Ren, W., Beard, R.W.: ‘Distributed consensus in multi-vehicle cooperative control’, Commun. Control Eng., 2008, 27, (2), pp. 7182.
    32. 32)
      • 32. Ge, S.S., Lee, T.H., Harris, C.J.: ‘Adaptive neural network control of robotic manipulators’, Proc. SPIE - Int. Soc. Opt. Eng., 2001, 4390, pp. 236242.
    33. 33)
      • 33. Kubat, M.: ‘Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7.’, Knowl. Eng. Rev., 1999, 13, (4), pp. 409412.
    34. 34)
      • 34. He, W., Ge, S.S., Li, Y., et al: ‘Neural network control of a rehabilitation robot by state and output feedback’, J. Intell. Robot. Syst., 2015, 80, (1), pp. 1531.
    35. 35)
      • 35. Ge, S.S., Wang, C.: ‘Adaptive neural control of uncertain MIMO nonlinear systems’, IEEE Trans. Neural Netw., 2004, 15, (3), pp. 674692.
    36. 36)
      • 36. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Courier Corporation, 2012).
    37. 37)
      • 37. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full-state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    38. 38)
      • 38. Behtash, S.: ‘Robust output tracking for non-linear systems’, Int. J. Control, 1990, 51, (6), pp. 13811407.
    39. 39)
      • 39. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, pp. 146154.
    40. 40)
      • 40. Yang, C., Wang, X., Cheng, L., et al: ‘Neural-learning-based telerobot control with guaranteed performance’, IEEE Trans. Cybern., 2016, PP, (99), pp. 112.
    41. 41)
      • 41. Ge, S.S., Hang, C.C., Lee, T.H., et al: ‘Stable adaptive neural network control’ (Springer International, 2002), vol. 13.
    42. 42)
      • 42. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    43. 43)
      • 43. Khalil, H.K., Grizzle, J.W.: ‘Nonlinear systems’ (Prentice-Hall, New Jersey, 1996).
    44. 44)
      • 44. Liu, Z., Chen, C., Zhang, Y., et al: ‘Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism’, IEEE Trans. Cybern., 2015, 45, (3), pp. 507518.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0188
Loading

Related content

content/journals/10.1049/iet-cta.2017.0188
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address