access icon free Analytical solutions to the matrix inequalities in the robust control scheme based on implicit Lyapunov function for spacecraft rendezvous on elliptical orbit

In this study, the problem of robust control for spacecraft rendezvous on elliptical orbit, which contains parameter uncertainties and external disturbances, is investigated based on the implicit Lyapunov function method. A state-feedback controller is first designed, and its existence conditions are derived in terms of linear matrix inequalities (LMIs) which should be solved in real time. An analytical solution to these LMIs is provided to greatly reduce the computational burden. On the basis of the state-feedback analysis, an observer-based output-feedback controller is proposed, and it is proved finite-time stable by constructing an analytical solution to the parameterised nonlinear matrix inequalities (NLMIs). The advantage brought by the proposed analytical solution is that whether these NLMIs hold only need to be checked at two points, while in previous researches they were supposed to be checked at infinite points. The effectiveness of the theoretical results is illustrated by simulation examples.

Inspec keywords: Lyapunov methods; linear matrix inequalities; robust control; observers; space vehicles; aerospace control; feedback

Other keywords: spacecraft; state-feedback controller; elliptical orbit; LMI; external disturbances; robust control scheme; linear matrix inequalities; observer; parameter uncertainties; output-feedback controller; state-feedback analysis; Lyapunov function; matrix inequalities

Subjects: Algebra; Stability in control theory; Aerospace control; Simulation, modelling and identification

References

    1. 1)
      • 9. Adamy, J., Flemming, A.: ‘Soft variable-structure controls: a survey’, Automatica, 2004, 40, (11), pp. 18211844.
    2. 2)
      • 12. Lens, H., Adamy, J., Domont-Yankulova, D.: ‘A fast nonlinear control method for linear systems with input saturation’, Automatica, 2011, 47, (4), pp. 857860.
    3. 3)
      • 13. Polyakov, A., Efimov, D., Perruquetti, W.: ‘Finite-time stabilization using implicit Lyapunov function technique’, Int. Fed. Autom. Control, 2013, 46, (23), pp. 140145.
    4. 4)
      • 16. Polyakov, A., Efimov, D., Perruquetti, W., et al: ‘Implicit Lyapunov–Krasovski functionals for stability analysis and control design of time-delay systems’, IEEE Trans. Autom. Control, 2015, 60, (12), pp. 33443349.
    5. 5)
      • 26. Polyakov, A., Efimov, D., Perruquetti, W.: ‘Homogeneous differentiator design using implicit Lyapunov function method’. European Control Conf., 2014, pp. 288293.
    6. 6)
      • 7. Jia, Y.M.: ‘General solution to diagonal model matching control of multi-output-delay systems and its applications in adaptive scheme’, Prog. Nat. Sci., 2009, 19, (1), pp. 7990.
    7. 7)
      • 24. Du, H.B., Cheng, Y.Y., He, Y.G., et al: ‘Finite-time output feedback control for a class of second-order nonlinear systems with application to DC–DC buck converters’, Nonlinear Dyn., 2014, 78, (3), pp. 20212030.
    8. 8)
      • 5. Jia, Y.M.: ‘Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion’, IEEE Trans. Control Syst. Technol., 2000, 8, (3), pp. 554569.
    9. 9)
      • 8. Lee, D., Vukovich, G.: ‘Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking’, Nonlinear Dyn., 83, (4), 2015, pp. 22632279.
    10. 10)
      • 1. Fehse, W.: ‘Automated rendezvous and docking of spacecraft’ (Cambridge University Press, 2003, 1st edn.), pp. 16.
    11. 11)
      • 19. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9), pp. 924941.
    12. 12)
      • 15. Zimenko, K., Polyakov, A., Efimov, D.: ‘Stabilization of chain of integrators with arbitrary order in finite-time’. Conf. on Decision and Control, 2015, pp. 46374641.
    13. 13)
      • 21. Angulo, M.T., Fridman, L., Moreno, J.A.: ‘Output-feedback finite-time stabilization of disturbed feedback linearizable nonlinear systems’, Automatica, 2013, 49, (9), pp. 27672773.
    14. 14)
      • 27. Lopez-Ramirez, F., Polyakov, A., Efimov, D., et al: ‘Finite-time and fixed-time observers design via implicit Lyapunov function’. European Control Conf., 2016, pp. 289294.
    15. 15)
      • 25. Bernuau, E., Perruquetti, W., Efimov, D., et al: ‘Robust finite-time output feedback stabilization of the double integrator’, Int. J. Control, 2015, 88, (3), pp. 451460.
    16. 16)
      • 22. Chalanga, A., Kamal, S., Fridman, L., et al: ‘How to impelemt super-twisting controller based on sliding mode observer?’. 13th IEEE Workshop on Variable Structure Systems, 2014, pp. 16.
    17. 17)
      • 4. Yang, C.F., Peng, H.J., Tan, S.J., et al: ‘Improved time-varying controller based on parameter optimization for libration-point orbit maintenance’, J. Aerosp. Eng., 2016, 29, (1), p. 04015010.
    18. 18)
      • 11. Jasniewicz, B., Adamy, J.: ‘Fast robust control of linear systems subject to actuator saturation’, Int. Fed. Autom. Control, 2008, 41, (2), pp. 1517915184.
    19. 19)
      • 20. Levant, A.: ‘Homogeneity approach to high-order sliding mode design’, Automatica, 2005, 41, (5), pp. 823830.
    20. 20)
      • 18. Tian, X.W., Hou, M.D., Jia, Y.M., et al: ‘Robust control for elliptical orbit spacecraft rendezvous using implicit Lyapunov function’. Chinese Intelligent Systems Conf., 2016, pp. 277287.
    21. 21)
      • 23. Zhou, A.M.: ‘Finite-time output feedback attitude tracking control’, IEEE Trans. Control Syst. Technol., 2014, 22, (1), pp. 338345.
    22. 22)
      • 14. Polyakov, A., Efimov, D., Perruquetti, W.: ‘Finite-time and fixed-time stabilization: implicit Lyapunov function approach’, Automatica, 2015, 51, pp. 332340.
    23. 23)
      • 28. Yamanaka, K., Ankerson, F.: ‘New state transition matrix for relative motion on an arbitrary elliptical orbit’, J. Guid. Control Dyn., 2002, 25, (1), pp. 6066.
    24. 24)
      • 6. Jia, Y.M.: ‘Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty: a predictive approach’, IEEE Trans. Autom. Control, 2003, 48, (8), pp. 14131416.
    25. 25)
      • 2. Peng, H.J., Zhao, J., Wu, Z.G., et al: ‘Optimal periodic controller for formation flying on libration point orbits’, Acta Astronaut., 2011, 69, (7-8), pp. 537550.
    26. 26)
      • 10. Adamy, J.: ‘Strukturvariable regelungen mittels impliziter Ljapunov-funktionen’. PhD dissertation, University of Dortmundm, Germany, 1991.
    27. 27)
      • 3. Zhou, B., Cui, N.G., Duan, G.R.: ‘Circular orbital rendezvous with actuator saturation and delay: a parametric Lyapunov equation approach’, IET Control Theory Appl., 2012, 6, (9), pp. 12811287.
    28. 28)
      • 17. Mera, M., Polyakov, A., Perruquetti, W., et al: ‘Finite-time attractive ellipsoid method using implicit Lyapunov functions’. Conf. on Decision and Control, 2015, pp. 68926896.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0176
Loading

Related content

content/journals/10.1049/iet-cta.2017.0176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading