Digital control and sampling period assignment of multiple plants in networked control systems

Digital control and sampling period assignment of multiple plants in networked control systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the problem of sampling period assignment and design of digital state feedback controllers for systems subject to time-varying sampling periods and uncertain delays. The system is controlled through a communication network, where the sampling period and the network-induced delay are bounded in a known interval. The sampled system is described by a linear parameter-varying discrete-time model obtained by means of the Cayley–Hamilton theorem. The proposed discretisation procedure improves the current approaches in the literature and allows the design of controllers that are robust to the delay and depending on the sampling period defined by a scheduling policy in a scenario with concurrent access to the communication network by multiple plants. The gain-scheduled linear quadratic controller is designed by means of linear matrix inequalities. The policy to access the network is dynamic and formulated as an optimisation problem. Numerical experiments illustrate the efficiency and the validity of the proposed approach.


    1. 1)
      • 1. Gao, H., Chen, T., Lam, J.: ‘A new delay system approach to network-based control’, Automatica, 2008, 44, (1), pp. 3952.
    2. 2)
      • 2. Liang, Y., Chen, T., Pan, Q.: ‘Optimal linear state estimator with multiple packet dropouts’, IEEE Trans. Autom. Control, 2010, 55, (6), pp. 14281433.
    3. 3)
      • 3. Cloosterman, M.B.G., Hetel, L., van de Wouw, N., et al.: ‘Controller synthesis for networked control systems’, Automatica, 2010, 46, pp. 15841594.
    4. 4)
      • 4. Elia, N., Mitter, S.K.: ‘Stabilization of linear systems with limited information’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 13841400.
    5. 5)
      • 5. Song, H., Yu, L., Zhang, W.-A.: ‘Stabilisation of networked control systems with communication constraints and multiple distributed transmission delays’, IET Control Theory Appl., 2009, 3, (10), pp. 13071316.
    6. 6)
      • 6. Chamaken, A., Litz, L.: ‘Joint design of control and communication in wireless networked control systems: a case study’. Proc. 2010 American Control Conf., Baltimore, MD, USA, June 2010, pp. 18351840.
    7. 7)
      • 7. Görges, D., Izák, M., Liu, S.: ‘Optimal control and scheduling of switched systems’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 135140.
    8. 8)
      • 8. Zhou, C., Du, M., Chen, Q.: ‘Co-design of dynamic scheduling and h-infinity control for networked control systems’, Appl. Math. Comput., 2012, 218, pp. 1076710775.
    9. 9)
      • 9. Reimann, S., Wu, W., Liu, S.: ‘A novel control-schedule codesign method for embedded control systems’. Proc. 2012 American Control Conf., Montreal, QC, Canada, June 2012, pp. 37663771.
    10. 10)
      • 10. Wen, S., Ge, G., Yang, G., et al: ‘Protocol sequence-based control of networked systems’. Proc. 52nd IEEE Conf. Decision and Control, Florence, Italy, December 2013, pp. 72537258.
    11. 11)
      • 11. Rehbinder, H., Sanfridson, M.: ‘Scheduling of a limited communication channel for optimal control’, Automatica, 2004, 40, (3), pp. 491500.
    12. 12)
      • 12. Haupt, A., Tognetti, E.S., Bauchspiess, A., et al.: ‘Control design in a distributed WNCS using energy optimal scheduled medium access’. Proc. 53nd IEEE Conf. Decision and Control, Los Angeles, CA, USA, December 2014, pp. 68426848.
    13. 13)
      • 13. Guinaldo, M., Sánchez, J., Dormido, S.: ‘Co-design strategy of networked control systems for treacherous network conditions’, IET Control Theory Appl., 2011, 5, (16), pp. 19061915.
    14. 14)
      • 14. Eker, J., Hagander, P., Årzén, K.E.: ‘A feedback scheduler for realtime controller tasks’, Control Eng. Pract., 2000, 8, (12), pp. 13691378.
    15. 15)
      • 15. Henriksson, D., Cervin, A.: ‘Optimal on-line sampling period assignment for real-time control tasks based on plant state information’. Proc. 44th IEEE Conf. Decision and Control and European Control Conf., Seville, Spain, December 2005, pp. 44694474.
    16. 16)
      • 16. Cervin, A., Velasco, M., Martí, P., et al.: ‘Optimal online sampling period assignment: Theory and experiments’, IEEE Trans. Control Syst. Technol., 2011, 19, (4), pp. 902910.
    17. 17)
      • 17. Fridman, E., Seuret, A., Richard, J.P.: ‘Robust sampled-data stabilization of linear systems an input delay approach’, Automatica, 2004, 40, pp. 14411446.
    18. 18)
      • 18. Wu, D., Wu, J., Chen, S.: ‘Robust stabilisation control for discrete-time networked control systems’, Int. J. Control, 2010, 83, (9), pp. 18851894.
    19. 19)
      • 19. Hetel, L., Cloosterman, M.B.G., van de Wouw, N., et al.: ‘Comparison of stability characterisations for networked control systems’. Proc. 48th IEEE Conf. Decision and Control – 28th Chinese Control Conf., Shanghai, P.R. China, December 2009, pp. 79117916.
    20. 20)
      • 20. Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., et al.: ‘Robust stability of networked control systems with time-varying network induced delays’. Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, USA, December 2006, pp. 49804985.
    21. 21)
      • 21. Hetel, L., Daafouz, J., Iung, C.: ‘Stabilization of arbitrary switched linear systems with unknown time-varying delays’, IEEE Trans. Autom. Control, 2006, 51, (10), pp. 16681674.
    22. 22)
      • 22. Heemels, W.P.M.H., van de Wouw, N., Giele, R.H., et al.: ‘Comparison of over-approximation methods for stability analysis of networked control systems’. The 13th ACM Int. Conf. Hybrid Systems: Computation and Control, Stockholm, Sweden, April 2010, pp. 79117916.
    23. 23)
      • 23. Pan, Y.-J., Marquez, H.J., Chen, T.: ‘Stabilization of remote control systems with unknown time varying delays by lmi techniques’, Int. J. Control, 2006, 79, (7), pp. 752763.
    24. 24)
      • 24. Zhang, L., Shi, Y., Chen, T., , et al: ‘A new method for stabilization of networked control systems with random delays’, IEEE Trans. Autom. Control, 2005, 50, (8), pp. 11771181.
    25. 25)
      • 25. Hetel, L., Daafouz, J., Iung, C.: ‘LMI control design for a class of exponential uncertain systems with application to network controlled switched systems’. Proc. 2007 American Control Conf., New York, NY, USA, July 2007, pp. 14011406.
    26. 26)
      • 26. Borges, R.A., Oliveira, R.C.L.F., Abdallah, C.T., et al.: ‘Robust H networked control for systems with uncertain sampling rates’, IET Control Theory Appl., 2010, 4, (1), pp. 5060.
    27. 27)
      • 27. Braga, M.F., Morais, C.F., Tognetti, E.S., et al.: ‘Discretisation and control of polytopic systems with uncertain sampling rates and network-induced delays’, Int. J. Control, 2014, 87, (11), pp. 23982411.
    28. 28)
      • 28. Izák, M., Görges, D., Liu, S.: ‘Stabilization of systems with variable and uncertain sampling period and time delay’, Nonlinear Anal. Hybrid Syst., 2010, 4, pp. 291305.
    29. 29)
      • 29. Gielen, R., Olaru, S., Lazar, M., et al.: ‘On polytopic inclusions as a modeling framework for systems with time-varying delays’, Automatica, 2010, 46, (3), pp. 615619.
    30. 30)
      • 30. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. Proc. 2004 IEEE Int. Symp. Computer Aided Control Systems Design, Taipei, Taiwan, September 2004, pp. 284289.
    31. 31)
      • 31. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Optim. Methods Softw., 1999, 11, (1-4), pp. 625653. Available at
    32. 32)
      • 32. Åström, K.J., Wittenmark, B.: ‘Computer controlled systems: theory and design’ (Prentice-Hall Inc., Englewood Cliffs, NJ, 1984).
    33. 33)
      • 33. Antsaklis, P.J., Michel, A.N.: ‘Linear systems’ (Birkhäuser, Boston, 2006).
    34. 34)
      • 34. Oliveira, R.C.L.F., Bliman, P.-A., Peres, P.L.D.: ‘Robust LMIs with parameters in multi-simplex: existence of solutions and applications’. Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, December 2008, pp. 22262231.
    35. 35)
      • 35. Agulhari, C.M., Oliveira, R.C.L.F., Peres, P.L.D.: ‘Robust LMI parser: a computational package to construct LMI conditions for uncertain systems’. Anais do XIX Congresso Brasileiro de Automática, Campina Grande, PB, Brasil, September 2012, pp. 22982305.

Related content

This is a required field
Please enter a valid email address