access icon free Observer-based non-linear H attitude control for a flexible satellite

This study focuses on the observer-based non-linear H (OBNH) attitude control for a flexible satellite with external disturbances and local state-region constraints. By considering the structural features of the attitude system and applying Lyapunov stability theory, the solvable conditions of the OBNH attitude control problem are provided. An advantage of this study is that the state-feedback controller and the reduced-order state observer can be designed independently, thus significantly reducing the complexity of the attitude control algorithm. Furthermore, based on the polynomial sum of squares (SOSs) and the generalised S-procedure techniques, the above problem can be transformed into a convex optimisation problem with SOS constraints. This conversion can effectively overcome the computational difficulties widely present in the control problem of non-linear systems. Finally, a numerical example is given to illustrate the effectiveness and feasibility of the proposed approach.

Inspec keywords: Lyapunov methods; observers; attitude control; nonlinear control systems; H∞ control; artificial satellites; control system synthesis; state feedback; convex programming; stability

Other keywords: generalised S-procedure techniques; solvable conditions; polynomial sum-of-squares; SOS constraints; local state-region constraints; polynomial SOS; observer-based nonlinear H∞ attitude control; external disturbances; convex optimisation problem; OBNH attitude control problem; Lyapunov stability theory; flexible satellite; reduced-order state observer design; state-feedback controller design; structural features

Subjects: Spatial variables control; Nonlinear control systems; Stability in control theory; Aerospace control; Control system analysis and synthesis methods; Simulation, modelling and identification; Optimal control; Optimisation techniques

References

    1. 1)
      • 17. Capua, A., Shapiro, A., Choukroun, D.: ‘Robust nonlinear H output-feedback for spacecraft attitude control’. AIAA Guidance, Navigation, and Control Conf., National Harbor, MD, January 2014.
    2. 2)
      • 20. Sostools: sum of squares optimization toolbox for MATLAB: user's guide version 3.0’. Available at http://www.cds.caltech.edu/sostools/, accessed 16 October 2013.
    3. 3)
      • 9. Sun, H.F., Yang, Z.L., Zeng, J.P.: ‘New tracking-control strategy for airbreathing hypersonic vehicles’, J. Guid. Control Dyn., 2013, 36, (3), pp. 846859.
    4. 4)
      • 16. Zheng, M., Wang, J: ‘Applying back-stepping and LPV control strategy to improve satellite attitude maneuver performance’, Electr. Mach. Control, 2010, 14, (9), pp. 100106.
    5. 5)
      • 24. Sidi, M.J.: ‘Spacecraft dynamics and control: a practical engineering approach’ (Cambridge University Press, UK, 1997).
    6. 6)
      • 5. Sun, H.F., Yang, Z.L., Meng, B.: ‘Tracking control of a class of non-linear systems with applications of cruise control of hypersonic vehicles’, Int. J. Control, 2015, 88, (5), pp. 885896.
    7. 7)
      • 14. Gollu, N., Rodrigues, L.: ‘Control of large angle attitude maneuvers for rigid bodies using sum of squares’. Proc. American Control Conf., New York, USA, 2007, pp. 31563161.
    8. 8)
      • 26. Gennaro S., Di: ‘Output stabilization of flexible spacecraft with active vibration suppression’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (3), pp. 747759.
    9. 9)
      • 30. Boyd, S., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (Society for Industrial and Applied Mathematics, Philadelphia, 1994).
    10. 10)
      • 11. Krug, M., Staa, A., Nguang, S.: ‘Robust H static output feedback controller design for parameter dependent polynomial systems: an iterative sum of squares approach’, J. Franklin Inst., 2013, 350, (2), pp. 318330.
    11. 11)
      • 28. Zheng, D.Z.: ‘Linear system theory’ (Tsinghua University Press, Beijing, 2002).
    12. 12)
      • 10. Prempain, E.: ‘An application of the sum of squares decomposition to the L2 gain computation for a class of nonlinear systems’. Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, December 2005, pp. 68656868.
    13. 13)
      • 29. Lin, C., Wang, Q.G., Lee, T.H., et al: ‘Observer-based H fuzzy control design for T–S fuzzy systems with state delays’, Automatica, 2008, 44, (3), pp. 868874.
    14. 14)
      • 15. Gollu, N.: ‘Switched control of satellites for global stabilization and local performance: a sum of squares approach’. Proc. American Control Conf., Washington, DC, USA, 2008, pp. 29872992.
    15. 15)
      • 1. Dong, C.Y., Xu, L.J., Chen, Y., et al: ‘Networked flexible spacecraft attitude maneuver based on adaptive fuzzy sliding mode control’, Acta Astronaut., 2009, 65, (11-12), pp. 15611570.
    16. 16)
      • 22. Jarvis-Wloszek, Z.W.: ‘Lyapunov based analysis and controller synthesis for polynomial system using sum-of-squares optimization’. PhD thesis, University of California, 2003.
    17. 17)
      • 6. Wang, H.Q., Liu, K.F., Liu, X.P., et al: ‘Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems’, IEEE Trans. Cybern., 2015, 45, (9), pp. 19771987.
    18. 18)
      • 4. Chen, B., Lin, C., Liu, X.P., et al: ‘Observer-based adaptive fuzzy control for a class of nonlinear delayed systems’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (1), pp. 2736.
    19. 19)
      • 7. Fazlyab, A.R., Saberi, F.F., Kabganian, M.: ‘Adaptive attitude controller for a satellite based on neural network in the presence of unknown external disturbances and actuator faults’, Adv. Space Res., 2016, 57, (1), pp. 367377.
    20. 20)
      • 19. Zhou, Y.R., Zeng, J.P.: ‘Observer-based robust stabilization for a class of uncertain polynomial systems’, Trans. Inst. Meas. Control, 2017, 39, (5), pp. 675687.
    21. 21)
      • 27. Hu, Q.L.: ‘Robust adaptive back-stepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint’, J. Sound Vibr., 2009, 327, pp. 285298.
    22. 22)
      • 21. Parrilo, P.A.: ‘Semidefinite programming relaxations for semialgebraic problems’, Math. Program. B, 2003, 96, (2), pp. 293320.
    23. 23)
      • 18. Zheng, Q., Wu, F.: ‘Generalized nonlinear H synthesis condition with its numerically efficient solution’, Int. J. Robust Nonlinear Control, 2011, 21, (18), pp. 20792100.
    24. 24)
      • 23. Shuster, M.D.: ‘A survey of attitude representations’, J. Astronaut. Sci., 1993, 41, (4), pp. 439517.
    25. 25)
      • 13. Nguang, S.K., Saat, S., Krug, M.: ‘Static output feedback controller design for uncertain polynomial systems: an iterative sum of squares approach’, IET Control Theory Appl., 2011, 5, (9), pp. 10791084.
    26. 26)
      • 12. Prajna, S., Papachristodoulou, A., Wu, F.: ‘Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach’. Proc. Fifth Asian Control Conf., Melbourne, Australia, July 2004, pp. 157165.
    27. 27)
      • 2. Yang, C.D., Sun, Y.P.: ‘Mixed H2/H state-feedback design for micro-satellite attitude control’, Control Eng. Pract., 2002, 10, (9), pp. 951970.
    28. 28)
      • 3. Wang, H.Q, Liu, X.P., Liu, K.F.: ‘Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure’, Fuzzy Sets Syst., 2016, 302, (1), pp. 101120.
    29. 29)
      • 25. Gennaro S., Di: ‘Active vibration suppression in flexible spacecraft attitude tracking’, J. Guid. Control Dyn., 1998, 21, pp. 400408.
    30. 30)
      • 8. Wu, S.N., Wen, S.H.: ‘Robust H output feedback control for attitude stabilization of a flexible spacecraft’, Nonlinear Dyn., 2016, 84, (1), pp. 405412.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0129
Loading

Related content

content/journals/10.1049/iet-cta.2017.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading