http://iet.metastore.ingenta.com
1887

I–PD controller for integrating plus time-delay processes

I–PD controller for integrating plus time-delay processes

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An integral–proportional derivative (I–PD) control strategy for integrating plus time-delay processes is proposed. The proposed scheme consists of an inner PD loop and an outer I-loop for taking care of the servo as well as the regulatory action. Explicit formulas for tuning of the proposed controller are derived in terms of gain margin, phase margin and critical gain. Moreover, pole-placement and frequency loop-shaping design methods are also explored for designing the I–PD controller. Simulation results show the superiority of the proposed I–PD controller over conventional P/PI/PID ones for integrating processes. The design is also validated through experiments on a temperature control process.

References

    1. 1)
      • 1. Anil, C., Sree, R.P.: ‘Tuning of PID controllers for integrating systems using direct synthesis method’, ISA Trans., 2015, 57, pp. 211219.
    2. 2)
      • 2. Hamamci, S.E., Koksal, M.: ‘Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems’, Comput. Math. Appl., 2010, 59, (5), pp. 16211629.
    3. 3)
      • 3. Ali, A., Majhi, S.: ‘Integral criteria for optimal tuning of PI/PID controllers for integrating processes’, Asian J. Control, 2011, 13, (2), pp. 328337.
    4. 4)
      • 4. Chacón, J., Sánchez, J., Visioli, A., Yebra, L., Dormido, S.: ‘Characterization of limit cycles for self-regulating and integral processes with PI control and send-on-delta sampling’, J. Process Control, 2013, 23, (6), pp. 826838.
    5. 5)
      • 5. Jin, Q.B., Liu, Q.: ‘Analytical IMC–PID design in terms of performance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof’, J. Process Control, 2014, 24, (3), pp. 2232.
    6. 6)
      • 6. Padhan, D.G., Majhi, S.: ‘Modified Smith predictor and controller for time delay processes’, Electron. Lett., 2011, 47, (17), pp. 959961.
    7. 7)
      • 7. Padhan, D.G., Majhi, S.: ‘Enhanced cascade control for a class of integrating processes with time delay’, ISA Trans., 2013, 52, (1), pp. 4555.
    8. 8)
      • 8. Poulin, E., Pomerleau, A.: ‘PI settings for integrating processes based on ultimate cycle information’, IEEE Trans. Control Syst. Technol., 1999, 7, (4), pp. 509511.
    9. 9)
      • 9. Rao, A.S., Chidambaram, M.: ‘PI/PID controllers design for integrating and unstable systems’, in Vilanova, R., Visioli, A. (Eds.): PID control in the third millennium (Springer, 2012), pp. 75111.
    10. 10)
      • 10. Ang, K.H., Chong, G., Li, Y.: ‘PID control system analysis, design, and technology’, IEEE Trans. Control Syst. Technol., 2005, 13, (4), pp. 559576.
    11. 11)
      • 11. Hast, M., Hägglund, T.: ‘Optimal proportional–integral–derivative set-point weighting and tuning rules for proportional set-point weights’, IET Control Theory Appl., 2015, 9, (15), pp. 22662272.
    12. 12)
      • 12. Ntogramatzidis, L., Ferrante, A.: ‘Exact tuning of PID controllers in control feedback design’, IET Control Theory Appl., 2011, 5, (4), pp. 565578.
    13. 13)
      • 13. Ho, W.K., Gan, O.P., Tay, E.B., et al.: ‘Performance and gain and phase margins of well-known PID tuning formulas’, IEEE Trans. Control Syst. Technol., 1996, 4, (4), pp. 473477.
    14. 14)
      • 14. Ho, W.K., Hang, C.C., Zhou, J.H.: ‘Performance and gain and phase margins of well-known PI tuning formulas’, IEEE Trans. Control Syst. Technol., 1995, 3, (2), pp. 245248.
    15. 15)
      • 15. Ho, W.K., Hang, C.C., Zhou, J.: ‘Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins’, IEEE Trans. Control Syst. Technol., 1997, 5, (4), pp. 446452.
    16. 16)
      • 16. Li, K.: ‘PID tuning for optimal closed-loop performance with specified gain and phase margins’, IEEE Trans. Control Syst. Technol., 2013, 21, (3), pp. 10241030.
    17. 17)
      • 17. Mikhalevich, S.S., Baydali, S.A., Manenti, F.: ‘Development of a tunable method for PID controllers to achieve the desired phase margin’, J. Process Control, 2015, 25, pp. 2834.
    18. 18)
      • 18. Wang, Q.-G., Fung, H.-W., Zhang, Y.: ‘PID tuning with exact gain and phase margins’, ISA Trans., 1999, 38, (3), pp. 243249.
    19. 19)
      • 19. Ho, W.K., Hang, C.C., Cao, L.S.: ‘Tuning of PID controllers based on gain and phase margin specifications’, Automatica, 1995, 31, (3), pp. 497502.
    20. 20)
      • 20. Ho, W.K., Lim, K.W., Hang, C.C., et al.: ‘Getting more phase margin and performance out of PID controllers’, Automatica, 1999, 35, (9), pp. 15791585.
    21. 21)
      • 21. Ho, W.K., Lim, K.W., Xu, W.: ‘Optimal gain and phase margin tuning for PID controllers’, Automatica, 1998, 34, (8), pp. 10091014.
    22. 22)
      • 22. Chidambaram, M., Sree, R.P.: ‘A simple method of tuning PID controllers for integrator/dead-time processes’, Comput. Chem. Eng., 2003, 27, (2), pp. 211215.
    23. 23)
      • 23. Ali, A., Majhi, S.: ‘PID controller tuning for integrating processes’, ISA Trans., 2010, 49, (1), pp. 7078.
    24. 24)
      • 24. Padula, F., Visioli, A.: ‘Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes’, IET Control Theory Appl., 2012, 6, (6), pp. 776786.
    25. 25)
      • 25. Hu, W., Xiao, G., Li, X.: ‘An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes’, ISA Trans., 2011, 50, (2), pp. 268276.
    26. 26)
      • 26. Alfaro, V.M., Vilanova, R.: ‘Robust tuning and performance analysis of 2DoFPI controllers for integrating controlled processes’, Ind. Eng. Chem. Res., 2012, 51, (40), pp. 1318213194.
    27. 27)
      • 27. Matausek, M.R., Ribic, A.I.: ‘Design and robust tuning of control scheme based on the PD controller plus disturbance observer and low-order integrating first-order plus dead-time model’, ISA Trans., 2009, 48, (4), pp. 410416.
    28. 28)
      • 28. Mercader, P., Baños, A.: ‘API tuning rule for integrating plus dead time processes with parametric uncertainty’, ISA Trans., 2017, 67, pp. 246255.
    29. 29)
      • 29. Kaya, I., Tan, N., Atherton, D.P.: ‘A refinement procedure for PID controllers’, Electr. Eng., 2006, 88, (3), pp. 215221.
    30. 30)
      • 30. Kaya, I.: ‘A PI–PD controller design for control of unstable and integrating processes’, ISA Trans., 2003, 42, (1), pp. 111121.
    31. 31)
      • 31. Kaya, I.: ‘Obtaining controller parameters for a new PI–PD Smith predictor using autotuning’, J. Process Control, 2003, 13, (5), pp. 465472.
    32. 32)
      • 32. Matausek, M.R., Micic, A.D.: ‘A modified Smith predictor for controlling a process with an integrator and long dead-time’, IEEE Trans. Autom. Control, 1996, 41, (8), pp. 11991203.
    33. 33)
      • 33. Matausek, M.R., Micic, A.D.: ‘On the modified Smith predictor for controlling a process with an integrator and long dead-time’, IEEE Trans. Autom. Control, 1999, 44, (8), pp. 16031606.
    34. 34)
      • 34. Cominos, P., Munro, N.: ‘PID controllers: recent tuning methods and design to specification’, IEE Proc.-Control Theory Appl., 2002, 149, (1), pp. 4653.
    35. 35)
      • 35. Rajan, S., Wang, S., Inkol, R., et al.: ‘Efficient approximations for the arctangent function’, IEEE Signal Process. Mag., 2006, 23, (3), pp. 108111.
    36. 36)
      • 36. Grassi, E., Tsakalis, K.: ‘PID controller tuning by frequency loop-shaping: application to diffusion furnace temperature control’, IEEE Trans. Control Syst. Technol., 2000, 8, (5), pp. 842847.
    37. 37)
      • 37. Grassi, E., Tsakalis, K.S., Dash, S., et al.: ‘Integrated system identification and PID controller tuning by frequency loop-shaping’, IEEE Trans. Control Syst. Technol., 2001, 9, (2), pp. 285294.
    38. 38)
      • 38. Barbosa, R.S., Tenreiro Machado, J.A., Ferreira, I.M., et al.: ‘Tuning of PID controllers based on Bode's ideal transfer function’, Nonlinear Dyn., 2004, 38, (1), pp. 305321.
    39. 39)
      • 39. Bode, H.W., et al.: ‘Network analysis and feedback amplifier design’ (Van Nostrand, New York, 1945).
    40. 40)
      • 40. Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific, Belmont, 1999).
    41. 41)
      • 41. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    42. 42)
      • 42. PROCON – Level and flow, temperature process control manual (Feedback Instruments, 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0112
Loading

Related content

content/journals/10.1049/iet-cta.2017.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address