access icon free Adaptive stabilisation of a flexible riser by using the Lyapunov-based barrier backstepping technique

The focuses of this study are the vibration control and constraint problems of an input and output constrained flexible marine riser system, in which system parametric uncertainties are taken into account. Through the combination of integral-barrier Lyapunov function (IBLF), backstepping technique and adaptive technique, an adaptive Lyapunov-based barrier control with an auxiliary system is developed aiming at achieving the control purposes of vibration suppression and constraint satisfaction, where the auxiliary system is to compensate for the input saturation, IBLF is to solve the output constraint and adaptive laws are to handle the parametric uncertainties. In addition, disturbance observer is designed in the barrier term of IBLF, which could attenuate the effects of unknown boundary disturbance. With the proposed control, the uniform boundedness and stability of the closed-loop system are easily achieved. Finally, the significance of the proposed control is demonstrated via numerical simulation.

Inspec keywords: marine systems; vibration isolation; control nonlinearities; Lyapunov methods; uncertain systems; adaptive control; vibration control; constraint satisfaction problems; closed loop systems; stability

Other keywords: Lyapunov-based barrier control; constraint problems; IBLF; input saturation; adaptive stabilisation; auxiliary system; integral-barrier Lyapunov function; vibration suppression; adaptive technique; system parametric uncertainties; Lyapunov-based barrier backstepping technique; vibration control; backstepping technique; constraint satisfaction; input output constrained flexible marine riser system; closed-loop system stability; disturbance observer; adaptive laws

Subjects: Mechanical variables control; Self-adjusting control systems; Vehicle mechanics; Nonlinear control systems; Marine system control; Vibrations and shock waves (mechanical engineering); Stability in control theory

References

    1. 1)
      • 39. Ioannou, P., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, NJ, USA, 1996).
    2. 2)
      • 40. Hsu, L., Costa, R.R.: ‘Bursting phenomena in continuous-time adaptive systems with a σ-modification’, IEEE Trans. Autom. Control, 1987, 32, (1), pp. 8486.
    3. 3)
      • 36. Liu, Z.J., Liu, J.K.: ‘Boundary control of a flexible robotic manipulator with output constraints’, Asian J. Control, 2017, 19, (1), pp. 332345.
    4. 4)
      • 32. Krstic, M., Smyshlyaev, A.: ‘Boundary control of PDEs: a course on backstepping designs’ (SIAM, Philadelphia, USA, 2008).
    5. 5)
      • 23. Zhao, Z.J., Liu, Y., He, W., et al: ‘Adaptive boundary control of an axially moving belt system with high acceleration/deceleration’, IET Control Theory Appl., 2016, 10, (11), pp. 12991306.
    6. 6)
      • 1. Do, K.D., Pan, J.: ‘Boundary control of three-dimensional inextensible marine risers’, J. Sound Vib., 2009, 327, (3-5), pp. 299321.
    7. 7)
      • 26. Wu, H.N., Wang, J.W., Li, H.X.: ‘Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 642652.
    8. 8)
      • 6. Nojavanzadeh, D., Badamchizadeh, M.: ‘Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators’, IET Control Theory Appl., 2016, 10, (13), pp. 15651572.
    9. 9)
      • 35. He, W., Sun, C., Ge, S.S.: ‘Top tension control of a flexible marine riser by using integral-barrier Lyapunov function’, IEEE/ASME Trans. Mechatronics, 2015, 20, (2), pp. 497505.
    10. 10)
      • 41. Rahn, C.D.: ‘Mechatronic control of distributed noise and vibration’ (Springer-Verlag, New York, USA, 2001).
    11. 11)
      • 27. He, W., Zhang, S.: ‘Control design for nonlinear flexible wings of a robotic aircraft’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 351357.
    12. 12)
      • 34. He, W., Ge, S.S.: ‘Vibration control of a flexible beam with output constraint’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 50235030.
    13. 13)
      • 11. Zhao, Z.J., Liu, Y., Luo, F.: ‘Output feedback boundary control of an axially moving system with input saturation constraint’, ISA Trans., 2017, 68, pp. 2232.
    14. 14)
      • 37. He, W., Meng, T.T., Huang, D.Q., et al: ‘Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint’, IEEE Trans. Neural Netw. Learn. Syst., 2017, doi: 10.1109/TNNLS.2017.2673865.
    15. 15)
      • 19. Christofides, P., Armaou, A.: ‘Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control’, Syst. Control Lett., 2000, 39, (4), pp. 283294.
    16. 16)
      • 13. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    17. 17)
      • 45. Liu, Y., Zhao, Z.J., Guo, F.: ‘Adaptive Lyapunov-based backstepping control for an axially moving system with input saturation’, IET Control Theory Appl., 2016, 10, (16), pp. 20832092.
    18. 18)
      • 25. He, W., Nie, S.X., Meng, T.T., et al: ‘Modeling and vibration control for a moving beam with application in a drilling riser’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 10361043.
    19. 19)
      • 9. Wu, Y., Xue, X., Shen, T.: ‘Absolute stability of the Kirchhoff string with sector boundary control’, Automatica, 2014, 50, (7), pp. 19151921.
    20. 20)
      • 42. Zhang, S., He, W., Huang, D.Q.: ‘Active vibration control for a flexible string system with input backlash’, IET Control Theory Appl., 2016, 10, (7), pp. 800805.
    21. 21)
      • 43. Smith, G.D.: ‘Numerical solutions of partial differential equations: finite difference method’ (Oxford University Press, Oxford, 1978).
    22. 22)
      • 17. Balas, M.J.: ‘Active control of flexible systems’, J. Optim. Theory Appl., 1978, 25, (3), pp. 415436.
    23. 23)
      • 2. Guo, F., Liu, Y., Zhao, Z.J., et al: ‘Adaptive vibration control of a flexible marine riser via backstepping technique and disturbance adaptation’, Trans. Inst. Meas. Control, 2017, doi: 10.1177/0142331216684010.
    24. 24)
      • 18. Sakawa, Y., Matsuno, F., Fukushima, S.: ‘Modeling and feedback control of a flexible arm’, J. Robot. Syst., 1985, 2, (4), pp. 453472.
    25. 25)
      • 30. Guo, B.Z., Jin, F.F.: ‘Backstepping approach to the arbitrary decay rate for Euler–Bernoulli beam under boundary feedback’, Int. J. Control, 2010, 83, (10), pp. 20982106.
    26. 26)
      • 14. Zidane, I., Marinescu, B., Abbas-Turki, M.: ‘Linear time-varying control of the vibrations of flexible structures’, IET Control Theory Appl., 2014, 8, (16), pp. 17601768.
    27. 27)
      • 7. Sun, C.Y., He, W., Hong, J.: ‘Neural network control of a flexible robotic manipulator using the lumped spring-mass model’, IEEE Trans. Syst. Man Cybern. Syst., 2017, doi: 10.1109/TSMC.2016.2562506.
    28. 28)
      • 12. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, (4), pp. 146154.
    29. 29)
      • 24. Liu, Y, Zhao, Z.J., He, W.: ‘Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control’, ISA Trans., 2016, 64, (2016), pp. 394404.
    30. 30)
      • 38. Zhou, J., Wen, C.Y.: ‘Adaptive backstepping control of uncertain systems: nonsmooth nonlinearities, interactions or time-variations’ (Springer, Germany, 2008).
    31. 31)
      • 22. Liu, Y., Zhao, Z.J., He, W.: ‘Boundary control of an axially moving system with high acceleration/deceleration and disturbance observer’, J. Franklin Inst., 2017, 10, (11), pp. 12991306.
    32. 32)
      • 20. He, W., He, X.Y., Ge, S.S.: ‘Vibration control of flexible marine riser systems with input saturation’, IEEE/ASME Trans. Mechatronics, 2016, 21, (1), pp. 254265.
    33. 33)
      • 28. Zhang, L.X., Lam, J.: ‘Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16951701.
    34. 34)
      • 31. Liu, W.J., Krstic, M.: ‘Backstepping boundary control of Burgers’ equation with actuator dynamics', Syst. Control Lett., 2000, 41, (4), pp. 291303.
    35. 35)
      • 10. Liu, Y., Zhao, Z.J., He, W.: ‘Boundary control of an axially moving accelerated/decelerated belt system’, Int. J. Robust Nonlinear Control, 2016, 26, (17), pp. 38493866.
    36. 36)
      • 15. Zhao, Z.J., Liu, Y., Guo, F., et al: ‘Modelling and control for a class of axially moving nonuniform system’, Int. J. Syst. Sci., 2016, 48, (4), pp. 849861.
    37. 37)
      • 33. Smyshlyaev, A., Guo, B.Z., Krstic, M.: ‘Arbitrary decay rate for Euler–Bernoulli beam by backstepping boundary feedback’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 11341140.
    38. 38)
      • 29. Feng, Z.G., Lam, J., Shu, Z.: ‘Dissipative control for linear systems by static output feedback’, Int. J. Syst. Sci., 2013, 44, (8), pp. 15661576.
    39. 39)
      • 5. He, W., Ouyang, Y.C., Hong, J.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 4859.
    40. 40)
      • 8. He, W., Meng, T.T.: ‘Adaptive control of a flexible string system with input hysteresis’, IEEE Trans. Control Syst. Technol., 2017, doi: 10.1109/TCST.2017.2669158.
    41. 41)
      • 21. Nguyen, T.L., Do, K.D., Pan, J.: ‘Boundary control of two-dimensional marine risers with bending couplings’, J. Sound Vib., 2013, 332, (16), pp. 36053622.
    42. 42)
      • 16. He, W., Zhang, S., Ge, S.S.: ‘Robust adaptive control of a thruster assisted position mooring system’, Automatica, 2014, 50, (7), pp. 18431851.
    43. 43)
      • 3. He, W., Ge, S.S., How, B.V., et al: ‘Robust adaptive boundary control of a flexible marine riser with vessel dynamics’, Automatica, 2011, 47, (4), pp. 722732.
    44. 44)
      • 44. He, W., He, X.Y., Sun, C.Y.: ‘Vibration control of an industrial moving strip in the presence of input deadzone’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 46804689.
    45. 45)
      • 4. Dog, M., Istefanopulos, Y.: ‘Optimal nonlinear controller design for flexible robot manipulators with adaptive internal model’, IET Control Theory Appl., 2007, 1, (3), pp. 770778.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0076
Loading

Related content

content/journals/10.1049/iet-cta.2017.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading