http://iet.metastore.ingenta.com
1887

Fault detection for discrete-time Lipschitz non-linear systems in finite-frequency domain

Fault detection for discrete-time Lipschitz non-linear systems in finite-frequency domain

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of fault detection (FD) observer design for discrete-time Lipschitz non-linear systems with finite-frequency specifications is investigated. The finite-frequency and indices are introduced to measure the robustness to unknown disturbances and the sensitivity to faults, respectively. Based on the use of a reformulated Lipschitz property, the non-linear error dynamics are transformed into a linear parameter varying (LPV) system. A new lemma is proposed to characterise the system performances in finite-frequency domain. To reduce the conservativeness of the multi-objective problem, slack variable techniques are used to obtain the sufficient conditions for the design of FD observer which are derived in terms of linear matrix inequalities (LMIs). The proposed design method can provide less restrictive LMI conditions and achieve a better FD performance than the existing one in full frequency domain. Two numerical examples are given to show the effectiveness and superiority of the new results.

References

    1. 1)
      • 1. Chen, J., Patton, R.J.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, Boston, 1999).
    2. 2)
      • 2. Patton, R.J., Frank, P.M., Clark, R.N.: ‘Issues of fault diagnosis for dynamic systems’ (Springer, 2000).
    3. 3)
      • 3. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms and tools’ (Springer-Verlag, London, 2013, 2nd edn.).
    4. 4)
      • 4. Isermann, R.: ‘Fault diagnosis systems: an introduction from fault detection to fault tolerance’ (Springer-Verlag, New York, 2006).
    5. 5)
      • 5. Xu, A.P., Zhang, Q.H.: ‘Nonlinear system fault diagnosis based on adaptive estimation’, Automatica, 2004, 40, (7), pp. 11811193.
    6. 6)
      • 6. Yao, J.Y., Yang, G.C., Ma, D.W.: ‘Internal leakage fault detection and tolerant control of single-rod hydraulic actuators’, Math. Prob. Eng., 2014, 2014, Article ID 345345 .
    7. 7)
      • 7. Yan, X.G., Edwards, C.: ‘Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems’, Int. J. Syst. Sci., 2008, 39, (4), pp. 349359.
    8. 8)
      • 8. Orani, N., Pisano, A., Usai, E.: ‘Fault diagnosis for the vertical three-tank system via high-order sliding-mode observation’, J. Franklin Inst., 2010, 347, (6), pp. 923939.
    9. 9)
      • 9. Besancon, G.: ‘High-gain observation with disturbance attenuation and application to robust fault detection’, Automatica, 2003, 39, (6), pp. 10951102.
    10. 10)
      • 10. Su, X.J., Shi, P., Wu, L.G., et al: ‘Fault detection filtering for nonlinear switched stochastic systems’, IEEE Trans. Autom. Control, 2016, 61, (5), pp. 13101315.
    11. 11)
      • 11. Chadli, M., Abdo, A., Ding, S.X.: ‘H/H fault detection filter design for discrete-time Takagi-Sugeno fuzzy system’, Automatica, 2013, 49, (7), pp. 19962005.
    12. 12)
      • 12. He, S.P., Liu, F.: ‘Resilient fault detection observer design of fuzzy Markovian jumping systems with mode-dependent time-varying delays’, J. Franklin Inst., 2016, 353, (13), pp. 29432965.
    13. 13)
      • 13. Wei, X., Verhaegen, M.: ‘LMI solutions to the mixed H/H fault detection observer design for linear parameter-varying systems’, Int. J. Adap. Control Signal Process., 2011, 25, (2), pp. 114136.
    14. 14)
      • 14. Gao, Z.W., Ding, S.X.: ‘Fault reconstruction for Lipschitz nonlinear descriptor systems via linear matrix inequality approach’, Circuits Syst. Signal Process., 2008, 27, (3), pp. 295308.
    15. 15)
      • 15. Zhang, K., Jiang, B., Shi, P.: ‘Observer-based integrated robust fault estimation and accommodation design for discrete-time systems’, Int. J. Control, 2010, 83, (6), pp. 11671181.
    16. 16)
      • 16. Khosrowjerdi, M.J.: ‘Mixed H2/H approach to fault-tolerant controller design for Lipschitz non-linear systems’, IET Control Theory Appl., 2011, 5, (2), pp. 299307.
    17. 17)
      • 17. Defoort, M., Veluvolu, K.C., Rath, J.J., et al: ‘Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems’, Int. J. Adapt. Control Signal Process., 2016, 30, (2), pp. 271283.
    18. 18)
      • 18. Lan, J.L., Patton, R.J.: ‘Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems’, Int. J. Robust Nonlinear Control, 2017, 27, (5), pp. 761780.
    19. 19)
      • 19. Chen, W., Saif, M.: ‘Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems’, IET Control Theory Appl., 2007, 1, (6), pp. 16721680.
    20. 20)
      • 20. Zhang, X.D., Polycarpou, M.M., Parisini, T.: ‘Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation’, Automatica, 2010, 46, (2), pp. 290299.
    21. 21)
      • 21. Zhang, K.K., Jiang, B., Yan, X.G., et al: ‘Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device’, ISA Trans., 2016, 63, pp. 4959.
    22. 22)
      • 22. Boulkroune, B., Halabi, S., Zemouche, A.: ‘H/H fault detection filter for a class of nonlinear descriptor systems’, Int. J. Control, 2013, 86, (2), pp. 253262.
    23. 23)
      • 23. Dong, H.L., Wang, Z.D., Goa, H.: ‘Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities’, IEEE Trans. Circuits Syst. I Reg. Pap., 2012, 59, (10), pp. 23542362.
    24. 24)
      • 24. Guo, F.M., Ren, X.M., Li, Z.J., et al: ‘Fault detection for discrete-time Lipschitz nonlinear systems with signal-to-noise ratio constrained channels’, Neurocomputing, 2016, 194, (19), pp. 317325.
    25. 25)
      • 25. Zemouche, A., Boutayeb, M.: ‘On LMI conditions to design observers for Lischitz nonlinear systems’, Automatica, 2013, 49, (2), pp. 585591.
    26. 26)
      • 26. Iwasaki, T., Hara, S.: ‘Generalized KYP lemma: unified frequency domain inequalities with design applications’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 4159.
    27. 27)
      • 27. Wang, H., Yang, G.H.: ‘A finite frequency domain approach to fault detection for linear discrete-time systems’, Int. J. Control, 2008, 81, (7), pp. 11621171.
    28. 28)
      • 28. Ding, D.W., Yang, G.H.: ‘Fuzzy filter design for nonlinear systems in finite-frequency domain’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 935945.
    29. 29)
      • 29. Shen, M.Q., Ye, D.: ‘A finite frequency approach to control of Markov jump linear systems with incomplete transition probabilities’, Appl. Math. Comput., 2017, 295, pp. 5364.
    30. 30)
      • 30. Yang, H.J., Xia, Y.Q., Liu, B.: ‘Fault detection for T–S fuzzy discrete systems in finite-frequency domain’, IEEE Trans. Syst. Man Cybern. B Cybern., 2011, 41, (4), pp. 911920.
    31. 31)
      • 31. Li, X.J., Yang, G.H.: ‘Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    32. 32)
      • 32. Chibani, A., Chadli, M., Shi, P., et al: ‘Fuzzy fault detection filter design for T–S fuzzy systems in finite frequency domain’, IEEE Trans. Fuzzy Syst., 2016, DOI: 10.1109/TFUZZ.2016.2593921.
    33. 33)
      • 33. Chibani, A., Chadli, M., Braiek, N.B.: ‘A finite frequency approach to H filtering for T–S fuzzy systems with unknown inputs’, Asian J. Control, 2016, 18, (5), pp. 16081618.
    34. 34)
      • 34. Long, Y., Yang, G.H.: ‘Fault detection for a class of networked control systems with finite-frequency servo inputs and random packet dropouts’, IET Control Theory Appl., 2012, 6, (15), pp. 23972408.
    35. 35)
      • 35. Yao, J.Y., Jiao, Z.X., Ma, D.W.: ‘Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 62856293.
    36. 36)
      • 36. Iwasaki, T., Hara, S., Fradkov, A.L.: ‘Time domain interpretations of frequency domain inequalities on (semi) finite ranges’, Syst. Control Lett., 2005, 54, (7), pp. 681691.
    37. 37)
      • 37. Iwasaki, T., Hara, S., Yamauchi, H: ‘Dynamical system design from a control perspective: finite frequency positive-realness approach’, IEEE Trans. Autom. Control, 2003, 48, (8), pp. 13371354.
    38. 38)
      • 38. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to H control’, Int. J. Robust Nonlinear Control, 1994, 4, (4), pp. 421448.
    39. 39)
      • 39. Garcia, P., Bernussou, J.: ‘Pole assignment for uncertain systems in a specified disk by state feedback’, IEEE Trans. Autom. Control, 1995, 40, (1), pp. 184190.
    40. 40)
      • 40. Apkarian, P., Gahinet, P., Becker, G.: ‘Self-scheduled H control of linear paremeter-varying systems: a design example’, Automatica, 1995, 31, (9), pp. 12511261.
    41. 41)
      • 41. Ding, S.X., Jeinsch, T., Frank, P.M., et al: ‘A unified approach to the optimization of fault detection systems’, Int. J. Adaptive Control Signal Process., 2000, 14, (7), pp. 725745.
    42. 42)
      • 42. Frank, P.M.: ‘Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results’, Automatica, 1990, 26, (3), pp. 459474.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0074
Loading

Related content

content/journals/10.1049/iet-cta.2017.0074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address