http://iet.metastore.ingenta.com
1887

Controllability of dynamic-algebraic Boolean networks based on a new normalisation approach

Controllability of dynamic-algebraic Boolean networks based on a new normalisation approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the controllability of dynamic-algebraic Boolean control networks is investigated based on a new normalisation approach. Some lower dimensional controllability matrices are defined, and new necessary and sufficient conditions for the controllability are presented as well. An example is given to illustrate the efficiency of the proposed results.

References

    1. 1)
      • 1. Kauffman, S.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, pp. 437467.
    2. 2)
      • 2. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer, New York, 2009).
    3. 3)
      • 3. Fornasini, E., Valcher, M.: ‘On the periodic trajectories of Boolean control networks’, Automatica, 2013, 49, pp. 15061509.
    4. 4)
      • 4. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the Perron–Frobenius theory’, Automatica, 2012, 48, pp. 12181223.
    5. 5)
      • 5. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    6. 6)
      • 6. Liu, Y., Chen, H., Wu, B.: ‘Controllability of Boolean control networks with impulsive effects and forbidden states’, Math. Methods Appl. Sci., 2014, 37, pp. 19.
    7. 7)
      • 7. Zhang, L., Zhang, K.: ‘Controllability and observability of Boolean control networks with time-variant delays in states’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, pp. 14781484.
    8. 8)
      • 8. Lu, J., Zhong, J., Huang, C., et al: ‘On pinning controllability of Boolean control networks’, IEEE Trans. Autom. Control, 2016, 61, pp. 16581663.
    9. 9)
      • 9. Laschov, D., Margaliot, M.: ‘A maximum principle for single-input Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, pp. 913917.
    10. 10)
      • 10. Laschov, D., Margaliot, M.: ‘Minimum-time control of Boolean networks’, SIAM J. Control Optim., 2013, 51, pp. 28692892.
    11. 11)
      • 11. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for probabilistic Boolean networks’, Automatica, 2014, 51, pp. 12721278.
    12. 12)
      • 12. Li, H., Wang, Y.: ‘Output feedback stabilization control design for Boolean control networks’, Automatica, 2013, 49, pp. 36413645.
    13. 13)
      • 13. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, pp. 18531857.
    14. 14)
      • 14. Liu, Y., Cao, J., Sun, L., et al: ‘Sampled-data state feedback stabilization of Boolean control networks’, Neural Comput., 2016, 28, pp. 778799.
    15. 15)
      • 15. Chen, H., Liang, J., Huang, T., et al: ‘Synchronization of arbitrarily switched Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, pp. 612619.
    16. 16)
      • 16. Zhong, J., Lu, J., Liu, Y., et al: ‘Synchronization in an array of output-coupled Boolean networks with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, pp. 22882294.
    17. 17)
      • 17. Liu, Y., Sun, L., Lu, J., et al: ‘Feedback controller design for the synchronization of Boolean control networks’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 19911996.
    18. 18)
      • 18. Meng, M., Feng, J.: ‘Revisiting singular Boolean networks’. Chinese Control and Decision Conf.e (CCDC), 2014, pp. 36513656.
    19. 19)
      • 19. Meng, M., Feng, J.: ‘Topological structure and the disturbance decoupling problem of singular Boolean networks’, IET Control Theory Applic., 2014, 8, pp. 12471255.
    20. 20)
      • 20. Liu, Y., Li, B., Lou, J.: ‘Disturbance decoupling of singular Boolean control networks’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2016, 13, pp. 11941200.
    21. 21)
      • 21. Meng, M., Li, B., Feng, J.: ‘Controllability and observability of singular Boolean control networks’, Circuits Syst. Signal Process., 2015, 34, pp. 12331248.
    22. 22)
      • 22. Cheng, D., Xu, X.: ‘Bi-decomposition of multi-valued logical functions and its applications’, Automatica, 2013, 49, pp. 19791985.
    23. 23)
      • 23. Feng, J., Yao, J., Cui, P.: ‘Singular Boolean networks: semi-tensor product approach’, Sci. China Inf. Sci., 2013, 56, pp. 114.
    24. 24)
      • 24. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, pp. 16591667.
    25. 25)
      • 25. Frobenius, G.: ‘Ueber lineare substutionen undbilineare Formen’, J. für die reine und angewandte Math., 1877, 84, pp. 163.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0045
Loading

Related content

content/journals/10.1049/iet-cta.2017.0045
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address