© The Institution of Engineering and Technology
This study addresses a robust iterative learning control (ILC) scheme for nonlinear discretetime systems in which both the trail lengths and the initial state shifts could be randomly variant in iteration domain. The proposed higherorder ILC law guarantees that as the iteration number goes to infinity, the ILC tracking errors at the desired output trail period are bounded in mathematical expectation, and the bound of tracking errors is proportional to the random initial state shifts. Specifically, the ILC tracking errors in mathematical expectation can be driven to zero as the expectation of initial state shifts is zero. Two numerical examples are carried out to demonstrate the effectiveness of the proposed higherorder ILC law.
References


1)

1. Bristow, D.A., Tharayil, M., Alleyne, A.G.: ‘A survey of iterative learning control: a learning based method for highperformance tracking control’, IEEE Control Syst. Mag., 2006, 26, (3), pp. 96–114.

2)

2. Xu, J.X.: ‘A survey on iterative learning control for nonlinear systems’, Int. J. Control, 2011, 84, (7), pp. 1275–1294.

3)

3. Shen, D., Wang, Y.: ‘Survey on stochastic iterative learning control’, J. Process Control, 2014, 24, (12), pp. 64–77.

4)

4. Meng, D., Moore, K.L.: ‘Robust iterative learning control for nonrepetitive uncertain systems’, IEEE Trans. Automat. Control, 2017, 62, (2), pp. 907–913.

5)

5. Li, X., Ren, Q., Xu, J.X.: ‘Precise speed tracking control of a robotic fish via iterative learning control’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 2221–2228.

6)

6. Sampson, P., Freeman, C., Coote, S., et al: ‘Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis’, IEEE Trans. Neural Syst. Rehabil. Eng., 2016, 24, (2), pp. 235–248.

7)

7. Guth, M., Seel, T., Raisch, J.: ‘Iterative learning control with variable pass length applied to trajectory tracking on a crane with output constraints’. Proc. of 52nd IEEE Conf. on Decision and Control, 2013, pp. 6676–6681.

8)

8. Khong, S.Z., Nešić, D., Krstić, M.: ‘Iterative learning control based on extremum seeking’, Automatica, 2016, 66, pp. 238–245.

9)

9. Freeman, C.T., Rogers, E., Hughes, A.M., et al: ‘Iterative learning control in health care: electrical stimulation and roboticassisted upperlimb stroke rehabilitation’, IEEE Control Syst. Mag., 2012, 32, (1), pp. 18–43.

10)

10. Zhu, Q., Xu, J.X., Huang, D., et al: ‘Iterative learning control design for linear discretetime systems with multiple highorder internal models’, Automatica, 2015, 62, (11), pp. 65–76.

11)

11. Li, X.D., Lv, M.M., Ho, J.K.L.: ‘Adaptive ILC algorithms of nonlinear continuous systems with nonparametric uncertainties for nonrepetitive trajectory tracking’, Int. J. Syst. Sci., 2016, 47, (10), pp. 2279–2289.

12)

12. Wei, Y.S., Li, X.D.: ‘Iterative learning control for linear discretetime systems with high relative degree under initial state vibration’, IET Control Theory Appl.., 2016, 10, (10), pp. 1115–1126.

13)

13. Park, K.H.: ‘An average operatorbased PDtype iterative learning control for variable initial state error’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 865–869.

14)

14. Xu, J.X., Yan, R.: ‘On initial conditions in iterative learning control’, IEEE Trans. Autom. Control, 2005, 50, (9), pp. 1349–1354.

15)

15. Seel, T., Schauer, T., Raisch, J.: ‘Monotonic convergence of iterative learning control systems with variable pass length’, Int. J. Control, 2017, 90, (3), pp. 393–406.

16)

16. Li, X., Xu, J.X., Huang, D.: ‘An iterative learning control approach for linear systems with randomly varying trial lengths’, IEEE Trans. Autom. Control, 2014, 59, (7), pp. 1954–1960.

17)

17. Shen, D., Zhang, W., Wang, Y., et al: ‘On almost sure and mean square convergence of Ptype ILC under randomly varying iteration lengths’, Automatica, 2016, 63, pp. 359–365.

18)

18. Li, X., Xu, J.X., Huang, D.: ‘Iterative learning control for nonlinear dynamic systems with randomly varying trial lengths’, Int. J. Adapt. Control Signal Process., 2015, 29, (11), pp. 1341–1353.

19)

19. Shen, D., Zhang, W., Xu, J.X.: ‘Iterative learning control for discrete nonlinear systems with randomly iteration varying lengths’, Syst. Control Lett., 2016, 96, pp. 81–87.

20)

20. Gunnarsson, S., Norrlof, M.: ‘On the disturbance properties of high order iterative learning control algorithms’, Automatica, 2006, 42, (11), pp. 2031–2034.

21)

21. Hatonen, J., Owens, D., Feng, K.: ‘Basis functions and parameter optimisation in highorder iterative learning control’, Automatica, 2006, 42, (2), pp. 287–294.

22)

22. Sun, M., Wang, D.: ‘Analysis of nonlinear discretetime systems with higherorder iterative learning control’, Dyn. Control, 2001, 11, pp. 81–96.

23)

23. Wang, D.: ‘Convergence and robustness of discrete time nonlinear systems with iterative learning control’, Automatica, 1998, 34, (11), pp. 1445–1448.

24)

24. Imani, M., BragaNeto, U.M.: ‘Maximumlikelihood adaptive filtering for partiallyobserved Boolean dynamical systems’, IEEE Trans. Signal Process., 2017, 65, (2), pp. 359–371.

25)

25. Li, Y., Tong, S., Li, T.: ‘Observerbased adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown deadzones’, IEEE Trans. Fuzzy Syst., 2015, 23, (4), pp. 1228–1241.

26)

26. Zouari, F., Boulkroune, A., Ibeas, A., et al: ‘Observerbased adaptive neural network control for a class of MIMO uncertain nonlinear timedelay nonintegerorder systems with asymmetric actuator saturation’, Neural Comput. Appl., 2016, .
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0008
Related content
content/journals/10.1049/ietcta.2017.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6