http://iet.metastore.ingenta.com
1887

Approach to delay-dependent robust stability and stabilisation of delta operator systems with time-varying delays

Approach to delay-dependent robust stability and stabilisation of delta operator systems with time-varying delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the problem of delay-dependent stability and stabilisation of uncertain delta operator systems with time-varying delay. A new model transformation is proposed using a three-term approximation, which has a smaller approximation error than the existing methods based on one or two terms. On the basis of scaled small gain theorem (scaled small gain) and an appropriate Lyapunov–Krasovskii functional, a new stability criterion is proposed in terms of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness of the proposed method.

References

    1. 1)
      • 1. Goodwin, G.C., Leal, R.L., Mayne, D.Q., et al: ‘Rapprochement between continuous and discrete model reference adaptive control’, Automatica, 1986, 22, (2), pp. 199207.
    2. 2)
      • 2. Middleton, R., Goodwin, G.C.: ‘Improved finite word length characteristics in digital control using delta operators’, IEEE Trans. Autom. Control, 1986, 31, (11), pp. 10151021.
    3. 3)
      • 3. Hersh, M.A.: ‘The zeros and poles of delta operator systems’, Int. J. Control, 1993, 57, (3), pp. 557575.
    4. 4)
      • 4. Mrabti, M., Hmamed, A.: ‘Bounds for the solution of the Lyapunov matrix equation – a unified approach’, Syst. Control Lett., 1992, 18, pp. 7381.
    5. 5)
      • 5. Neuman, C.P.: ‘Properties of the delta operator model of dynamic physical systems’, IEEE Trans. Syst. Man Cybern., 1993, 23, (1), pp. 296301.
    6. 6)
      • 6. Chen, S., Wu, J., Istepanian, R.H., et al: ‘Optimising stability bounds of finite-precision controller structures for sampled-data systems in the δ-operator domain’, IEE Proc., Control Theory Appl., 1999, 146, (6), pp. 517526.
    7. 7)
      • 7. Xie, X., Yin, S., Gao, H., et al: ‘Asymptotic stability and stabilisation of uncertain delta operator systems with time varying delays’, IET Control Theory Appl., 2013, 7, (8), pp. 10711078.
    8. 8)
      • 8. Yang, H., Xia, Y.: ‘Low frequency positive real control for delta operator systems’, Automatica, 2012, 48, (8), pp. 17911795.
    9. 9)
      • 9. Yang, H., Xia, Y., Shi, P., et al: ‘Stability analysis for high frequency networked control systems’, IEEE Trans. Autom. Control, 2012, 57, (10), pp. 26942700.
    10. 10)
      • 10. Qiu, J., Yang, H., Shi, P., et al: ‘Robust H control for class of discrete-time Markovian jump systems with time-varying delays based on delta operator’, Circuits Syst. Signal Process., 2008, 27, (5), pp. 627643.
    11. 11)
      • 11. Yang, H., Xia, Y., Qiu, J., et al: ‘Filtering for a class of discrete-time systems with time-delays via delta operator approach’, Int. J. Syst. Sci., 2010, 41, (4), pp. 423433.
    12. 12)
      • 12. Yuan, Y., Yuan, H., Guo, L., et al: ‘Resilient control of networked control system under DoS attacks: A unified game approach’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 17861794.
    13. 13)
      • 13. Yang, H., Xia, Y., Shi, P., et al: ‘Analysis and synthesis of delta operator systems’, vol. 430 (Springer, New York, USA, 2012).
    14. 14)
      • 14. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities’, IET Control Theory Appl., 2012, 6, (16), pp. 25672575.
    15. 15)
      • 15. Sakthivel, R., Mathiyalagan, K., Anthoni, S.M.: ‘Robust H control for uncertain discrete-time stochastic neural networks with time-varying delays’, IET Control Theory Appl., 2012, 6, (9), pp. 12201228.
    16. 16)
      • 16. Wang, Z., Ho, D.W., Liu, Y., et al: ‘Robust H control for a class of nonlinear discrete time-delay stochastic systems with missing measurements’, Automatica, 2009, 45, (3), pp. 684691.
    17. 17)
      • 17. Hmamed, A.: ‘Projection Approach to the delay-dependent stability for neutral delay-differential systems’. ISCCSP Second Int. Symp. Communications, Control and Signal Processing, Marrakech, March 2006, pp. 1315.
    18. 18)
      • 18. Hmamed, A., Benzaouia, A., Tadeo, T.: ‘Improved delay dependent stability criteria for time delay systems’. CSC, Conf. Systems and Control, Marrakech, Morocco, 2007, pp. 1618.
    19. 19)
      • 19. Ramakrishnan, K., Ray, G.: ‘Improved delays-range dependent robust stability criteria for a class of Mur'e systems with sector-bounded nonlinearity’, J. Franklin Inst., 2011, 348, pp. 17691786.
    20. 20)
      • 20. Zong, G., Hou, L.: ‘New delay-dependent stability result and its application to robust performance analysis for discrete-time systems with delay’, IMA J. Math. Control Inf., 2010, 27, pp. 373386.
    21. 21)
      • 21. Hmamed, A., El Aiss, H., Hajjaji, A.E.: ‘Stability analysis of linear systems with time varying delay: An IO approach’. 2015 IEEE 54th Annual Conf. Decision and Control (CDC), December 2015, pp. 17561761.
    22. 22)
      • 22. Huang, Y.P., Zhou, K.: ‘Robust stability of uncertain time-delay systems’, IEEE Trans. Autom. Control, 2000, 45, (11), pp. 21692173.
    23. 23)
      • 23. Zhang, J., Knopse, C.R., Tsiotras, P.: ‘Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions’, IEEE Trans. Autom. Control, 2001, 46, (3), pp. 482486.
    24. 24)
      • 24. Fridman, E., Shaked, U.: ‘Input–output approach to stability and L 2-gain analysis of systems with time-varying delays, Syst’, Syst. Control Lett., 2007, 55, (12), pp. 10411053.
    25. 25)
      • 25. Kao, C.Y., Rantzer, A.: ‘Stability analysis of systems with uncertain time-varying delays’, Automatica, 2007, 43, (6), pp. 959970, ISO 690.
    26. 26)
      • 26. Kao, C.Y., Lincoln, B.: ‘Simple stability criteria for systems with time-varying delays’, Automatica, 2004, 40, (8), pp. 14291434.
    27. 27)
      • 27. Gu, K., Zhang, Y., Xu, S.: ‘Small gain problem in coupled differential-difference equations, time-varying delays, and direct Lyapunov method’, Int. J. Robust Nonlinear Control, 2011, 21, (4), pp. 429451.
    28. 28)
      • 28. Li, X., Gao, H.: ‘A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis’, IEEE Trans. Automatic Control, 2011, 56, (9), pp. 21722178.
    29. 29)
      • 29. Wang, S., Feng, J., Jiang, Y.: ‘Input–output method to fault detection for discrete-time fuzzy networked systems with time-varying delay and multiple packet losses’, Int. J. Syst. Sci., 2016, 47, (7), pp. 14951513.
    30. 30)
      • 30. Wang, S., Jiang, Y., Li, Y., et al: ‘Fault detection and control co-design for discrete-time delayed fuzzy networked control systems subject to quantization and multiple packet dropouts’, Fuzzy Sets Syst., 2017, 306, pp. 125.
    31. 31)
      • 31. Gu, K.: ‘An integral inequality in the stability problem of time-delay systems’. Proc. 39th IEEE Conf. Decision and Control, 2000, 2000, vol. 3, pp. 28052810.
    32. 32)
      • 32. Qiu, J.Q., Xia, Y., Yang, H., et al: ‘Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators’, IET Control Theory Appl., 2008, 2, (1), pp. 8793.
    33. 33)
      • 33. Gahinet, P., Nemirovskii, A., Laub, A.J., et al: ‘The LMI control toolbox. In Decision and Control’. Proc. 33rd IEEE Conf. IEEE, 1994, vol. 3, pp. 20382041.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0006
Loading

Related content

content/journals/10.1049/iet-cta.2017.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address