http://iet.metastore.ingenta.com
1887

Topological structure of implicit Boolean networks

Topological structure of implicit Boolean networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, implicit Boolean networks (IBNs), which are more general than classic BNs, are proposed for the first time motivated by the river-crossing decision problem. By resorting to the admissible set, some necessary and sufficient conditions are established, under which IBNs can be equivalently converted into classic BNs or restricted BNs. Subsequently, an improved approach is presented to determine the topological structure of dynamic-algebraic BNs (D-ABNs), based on which transformation relations between IBNs and D-ABNs are given. Finally, a biochemical oscillator example is used to show the application of the obtained results.

References

    1. 1)
      • 1. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer London Press, 2011).
    2. 2)
      • 2. Cheng, D., Qi, H., Zhao, Y.: ‘An introduction to analysis and control of Boolean networks: a semi-tensor product of matrices and its applications’ (World Scientific Press, 2012).
    3. 3)
      • 3. Cheng, D.: ‘On finite potential games’, Automatica, 2014, 50, (7), pp. 17931801.
    4. 4)
      • 4. Cheng, D., He, F., Qi, H., et al: ‘Modeling, analysis and control of networked evolutionary games’, IEEE Trans. Autom. Control, 2015, 60, (9), pp. 24022415.
    5. 5)
      • 5. Guo, P., Wang, Y., Li, H.: ‘Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method’, Automatica, 2013, 49, (11), pp. 33843389.
    6. 6)
      • 6. Wang, Y., Zhang, C., Liu, Z.: ‘A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems’, Automatica, 2012, 48, (7), pp. 12271236.
    7. 7)
      • 7. Cheng, D., Qi, H.: ‘A linear representation of dynamics of Boolean networks’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 22512258.
    8. 8)
      • 8. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 16591667.
    9. 9)
      • 9. Kauffman, S.A.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437467.
    10. 10)
      • 10. Cheng, D., Qi, H., Liu, T., et al: ‘A note on observability of Boolean control networks’, Syst. Control Lett., 2016, 87, pp. 7682.
    11. 11)
      • 11. Laschov, D., Margaliot, M., Even, G.: ‘Observability of Boolean networks: a graph-theoretic approach’, Automatica, 2013, 49, (8), pp. 23512362.
    12. 12)
      • 12. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the Perron–Frobenius theory’, Automatica, 2012, 48, (6), pp. 12181223.
    13. 13)
      • 13. Liu, Y., Chen, H., Wu, B.: ‘Controllability of Boolean control networks with impulsive effects and forbidden states’, Math. Methods Appl. Sci., 2014, 37, (1), pp. 19.
    14. 14)
      • 14. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    15. 15)
      • 15. Cheng, D.: ‘Disturbance decoupling of Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 210.
    16. 16)
      • 16. Yang, M., Li, R., Chu, T.: ‘Controller design for disturbance decoupling of Boolean control networks’, Automatica, 2013, 49, (1), pp. 273277.
    17. 17)
      • 17. Cheng, D., Qi, H., Li, Z., et al: ‘Stability and stabilization of Boolean networks’, Int. J. Robust Nonlinear Control, 2011, 21, (2), pp. 134156.
    18. 18)
      • 18. Li, F., Sun, J.: ‘Stability and stabilization of Boolean networks with impulsive effects’, Syst. Control Lett., 2012, 61, (1), pp. 15.
    19. 19)
      • 19. Liu, Y., Cao, J., Sun, L., et al: ‘Sampled-data state feedback stabilization of Boolean control networks’, Neural Comput., 2016, 28, (4), pp. 7787995.
    20. 20)
      • 20. Cheng, D., Li, Z., Qi, H.: ‘Realization of Boolean control networks’, Automatica, 2010, 46, (1), pp. 6269.
    21. 21)
      • 21. Cheng, D., Zhao, Y.: ‘Identification of Boolean control networks’, Automatica, 2011, 47, (4), pp. 702710.
    22. 22)
      • 22. Cheng, D., Qi, H., Li, Z.: ‘Model construction of Boolean network via observed data’, IEEE Trans. Neural Netw., 2011, 22, (4), pp. 525536.
    23. 23)
      • 23. Liu, Y., Sun, L., Lu, J., et al: ‘Feedback controller design for the synchronization of Boolean control networks’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 27, (9), pp. 19911996.
    24. 24)
      • 24. Guo, Y., Wang, P., Gui, W., et al: ‘Set stability and set stabilization of Boolean control networks based on invariant subsets’, Automatica, 2015, 61, pp. 106112.
    25. 25)
      • 25. Meng, M., Feng, J.: ‘Function perturbations in Boolean networks with its application in D. melanogaster gene network’, Eur. J. Control, 2014, 20, (2), pp. 8794.
    26. 26)
      • 26. Cheng, D., Zhao, Y., Xu, X.: ‘Mix-valued logic and its applications’, J. Shandong Univ., 2011, 46, (10), pp. 3244.
    27. 27)
      • 27. Feng, J., Yao, J., Cui, P.: ‘Singular Boolean networks: semi-tensor product approach’, Sci. China Inf. Sci., 2013, 56, (11), pp. 114.
    28. 28)
      • 28. Meng, M., Feng, J.: ‘Topological structure and the disturbance decoupling problem of singular Boolean networks’, IET Control Theory Appl., 2014, 8, (13), pp. 12471255.
    29. 29)
      • 29. Meng, M., Li, B., Feng, J.: ‘Controllability and observability of singular Boolean control networks’, Circuits Syst. Signal Process., 2015, 34, (4), pp. 12331248.
    30. 30)
      • 30. Meng, M., Feng, J.: ‘Optimal control problem of singular Boolean control networks’, Int. J. Control Autom. Syst., 2015, 13, (2), pp. 266273.
    31. 31)
      • 31. Shmulevich, I., Dougherty, E.R., Kim, S., et al: ‘Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2002, 18, (2), pp. 261274.
    32. 32)
      • 32. Li, H., Wang, Y.: ‘On reachability and controllability of switched Boolean control networks’, Automatica, 2012, 48, (11), pp. 29172922.
    33. 33)
      • 33. Li, H., Wang, Y.: ‘Consistent stabilizability of switched Boolean networks’, IEEE Trans. Neural Netw., 2013, 46, pp. 183189.
    34. 34)
      • 34. Li, H., Wang, Y., Xie, L., et al: ‘Disturbance decoupling control design for switched Boolean control networks’, Syst. Control Lett., 2014, 72, (72), pp. 16.
    35. 35)
      • 35. Li, H., Wang, Y.: ‘Controllability analysis and control design for switched Boolean networks with state and input constraints’, SIAM J. Control Optim., 2015, 53, (5), pp. 29552979.
    36. 36)
      • 36. Devdariani, E.N., Ledyaev, Y.S.: ‘Maximum principle for implicit control systems’, Appl. Math. Optim., 1999, 40, (1), pp. 79103.
    37. 37)
      • 37. Ito, H., Langerman, S., Yoshida, Y.: ‘Generalized river crossing problems’, Theory Comput. Syst., 2015, 56, (2), pp. 418435.
    38. 38)
      • 38. Ding, Z., Jiang, C.: ‘Application of temporal Petri nets in intelligent control’, Control Decis., 2002, 17, (2), pp. 230232.
    39. 39)
      • 39. Kim, K.: ‘Boolean matrix theory and applications’ (Dekker Press, 1982).
    40. 40)
      • 40. Yu, Y., Feng, J., Wang, S.: ‘Explicit formula of logical algebraic equations and singular Boolean networks with probability’. Proc. 35th Chinese Control Conf., Chengdu, China, July 2016, pp. 11921197.
    41. 41)
      • 41. Li, H., Wang, Y.: ‘Stability analysis for switched singular Boolean networks’, Control Theory Appl., 2014, 31, pp. 908914.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1658
Loading

Related content

content/journals/10.1049/iet-cta.2016.1658
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address