http://iet.metastore.ingenta.com
1887

Robust output feedback fault-tolerant control of non-linear multi-agent systems based on wavelet neural networks

Robust output feedback fault-tolerant control of non-linear multi-agent systems based on wavelet neural networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A robust output feedback active fault-tolerant leader-following controller for a class of non-linear multi-agent systems is presented. It is assumed that the states of the followers are not available; therefore, a local observer is constructed to estimate the states of each agent. In addition, the non-linear dynamics of agents may include uncertainties and the control input of the leader dynamics is unknown to all followers. Moreover, taking advantage of wavelet neural networks (WNNs), an online fault estimation scheme is developed which can effectively approximate the unknown actuator faults. The proposed decentralised observer-based robust cooperative controller is capable of compensating for the effects of unknown time-varying additive actuator faults, the model uncertainties, and the unknown input of the leader simultaneously. The stability analysis and convergence results that guarantee boundedness of all closed-loop signals are investigated via Lyapunov's direct method. To demonstrate the effectiveness of the proposed approach, a network of single-link manipulators is studied. As the results verify, the proposed WNN-based fault estimation scheme can properly approximate the unknown actuator faults, which results in efficient compensation in the fault-tolerant control design to achieve cooperative tracking objectives.

References

    1. 1)
      • 1. Ren, W., Beard, R.W., Atkins, E.M.: ‘Information consensus in multivehicle cooperative control’, IEEE Control Syst. Mag., 2007, 2, (27), pp. 7182.
    2. 2)
      • 2. Murray, R.M.: ‘Recent research in cooperative control of multivehicle systems’, J. Dyn. Syst. Meas. Control, 2007, 129, (5), pp. 571583.
    3. 3)
      • 3. Lin, M., Ou, L.-L., Wang, M., et al: ‘The local control scheme for switching consensus value in multi-agent systems’, J. Control Decis., 2015, 2, (3), pp. 185202.
    4. 4)
      • 4. Rezaee, H., Abdollahi, F.: ‘Pursuit formation of double-integrator dynamics using consensus control approach’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 42494256.
    5. 5)
      • 5. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    6. 6)
      • 6. Gu, G., Liu, F., Chen, X.: ‘Consensus control and feedback graph co-design for MIMO discrete-time multi-agent systems’, J. Control Decis., 2014, 1, (1), pp. 1833.
    7. 7)
      • 7. Semsar-Kazerooni, E., Khorasani, K.: ‘Team consensus for a network of unmanned vehicles in presence of actuator faults’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11551161.
    8. 8)
      • 8. Meskin, N., Khorasani, K.: ‘Fault detection and isolation: multi-vehicle unmanned systems’ (Springer, 2011).
    9. 9)
      • 9. Zhang, Y., Jiang, J.: ‘Bibliographical review on reconfigurable fault-tolerant control systems’, Annu. Rev. Control, 2008, 32, (2), pp. 229252.
    10. 10)
      • 10. Jiang, J., Yu, X.: ‘Fault-tolerant control systems: a comparative study between active and passive approaches’, Annu. Rev. Control, 2012, 36, (1), pp. 6072.
    11. 11)
      • 11. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decis., 2014, 1, (4), pp. 299316.
    12. 12)
      • 12. Azizi, S., Khorasani, K.: ‘A hierarchical architecture for cooperative actuator fault estimation and accommodation of formation flying satellites in deep space’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 14281450.
    13. 13)
      • 13. Zhou, B., Wang, W., Ye, H.: ‘Cooperative control for consensus of multi-agent systems with actuator faults’, Comput. Electr. Eng., 2014, 40, (7), pp. 21542166.
    14. 14)
      • 14. Chen, S., Ho, D.W., Li, L., et al: ‘Fault-tolerant consensus of multi-agent system with distributed adaptive protocol’, IEEE Trans. Cybern., 2015, 45, (10), pp. 21422155.
    15. 15)
      • 15. Chen, G., Song, Y.D.: ‘Robust fault-tolerant cooperative control of multi-agent systems: a constructive design method’, J. Franklin Inst., 2015, 352, (10), pp. 40454066.
    16. 16)
      • 16. Wang, X., Yang, G.-H.: ‘Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties’, IET Control Theory Appl., 2015, 9, (8), pp. 12741284.
    17. 17)
      • 17. Ye, D., Zhao, X., Cao, B.: ‘Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults’, IET Control Theory Appl., 2016, 10, (5), pp. 554563.
    18. 18)
      • 18. Deng, C., Yang, G.-H.: ‘Distributed adaptive fault-tolerant containment control for a class of multi-agent systems with non-identical matching non-linear functions’, IET Control Theory Appl., 2016, 10, (3), pp. 273281.
    19. 19)
      • 19. Shi, J., He, X., Wang, Z., et al: ‘Distributed fault detection for a class of second-order multi-agent systems: an optimal robust observer approach’, IET Control Theory Appl., 2014, 8, (12), pp. 10321044.
    20. 20)
      • 20. Liu, X., Gao, X., Han, J.: ‘Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances’, ISA Trans., 2016, 61, pp. 1528.
    21. 21)
      • 21. Liu, X., Gao, X., Han, J.: ‘Observer-based fault detection for high-order nonlinear multi-agent systems’, J. Franklin Inst., 2016, 353, (1), pp. 7294.
    22. 22)
      • 22. Zhang, K., Jiang, B., Cocquempot, V.: ‘Adaptive technique-based distributed fault estimation observer design for multi-agent systems with directed graphs’, IET Control Theory Appl., 2015, 9, (18), pp. 26192625.
    23. 23)
      • 23. Zhang, K., Liu, G., Jiang, B.: ‘Robust unknown input observer-based fault estimation of leader–follower linear multi-agent systems’, Circuits Syst. Signal Process., 2017, 36, (2), pp. 525542.
    24. 24)
      • 24. Jin, X.: ‘Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints’, Automatica, 2016, 68, pp. 228236.
    25. 25)
      • 25. Yang, H., Staroswiecki, M., Jiang, B., et al: ‘Fault tolerant cooperative control for a class of nonlinear multi-agent systems’, Syst. Control Lett., 2011, 60, (4), pp. 271277.
    26. 26)
      • 26. Shen, Q., Jiang, B., Shi, P., et al: ‘Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 494504.
    27. 27)
      • 27. Zuo, Z., Zhang, J., Wang, Y.: ‘Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 39233931.
    28. 28)
      • 28. Khalili, M., Zhang, X., Polycarpou, M., et al: ‘Distributed adaptive fault-tolerant control of uncertain multi-agent systems’, IFAC-PapersOnLine, 2015, 48, (21), pp. 6671.
    29. 29)
      • 29. Wang, Y., Song, Y., Lewis, F.L.: ‘Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 39783988.
    30. 30)
      • 30. Chen, G., Song, Y.: ‘Fault-tolerant output synchronisation control of multi-vehicle systems’, IET Control Theory Appl., 2014, 8, (8), pp. 574584.
    31. 31)
      • 31. Zhao, L., Jia, Y.: ‘Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults’, Int. J. Syst. Sci., 2016, 47, (8), pp. 19311942.
    32. 32)
      • 32. Deng, C., Yang, G.-H.: ‘Cooperative adaptive output feedback control for nonlinear multi-agent systems with actuator failures’, Neurocomputing, 2016, 199, pp. 5057.
    33. 33)
      • 33. Wen, G., Duan, Z., Li, Z., et al: ‘Stochastic consensus in directed networks of agents with non-linear dynamics and repairable actuator failures’, IET Control Theory Appl., 2012, 6, (11), pp. 15831593.
    34. 34)
      • 34. Xie, C.H., Yang, G.-H.: ‘Cooperative guaranteed cost fault-tolerant control for multi-agent systems with time-varying actuator faults’, Neurocomputing, 2016, 214, pp. 382390.
    35. 35)
      • 35. Meskin, N., Khorasani, K.: ‘Actuator fault detection and isolation for a network of unmanned vehicles’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 835840.
    36. 36)
      • 36. Zhao, D., Chi, M., Guan, Z.H., et al: ‘Distributed estimator-based fault detection for multi-agent networks’, Circuits Syst. Signal Process., 2017, pp. 114, doi:10.1007/s00034-017-0548-z.
    37. 37)
      • 37. Ye, D., Chen, M., Li, K.: ‘Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics’, ISA Trans., 2017, doi:10.1016/j.isatra.2017.06.007.
    38. 38)
      • 38. Hong, Y., Hu, J., Gao, L.: ‘Tracking control for multi-agent consensus with an active leader and variable topology’, Automatica, 2006, 42, (7), pp. 11771182.
    39. 39)
      • 39. Polycarpou, M., Ioannou, P.: ‘A robust adaptive nonlinear control design’, Automatica, 1996, 32, (3), pp. 423427.
    40. 40)
      • 40. Rajamani, R.: ‘Observers for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 397401.
    41. 41)
      • 41. Lan, J., Patton, R.J.: ‘Integrated fault estimation and fault–tolerant control for uncertain Lipschitz nonlinear systems’, Int. J. Robust Nonlinear Control, 2017, 27, (5), pp. 761780.
    42. 42)
      • 42. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 15781583.
    43. 43)
      • 43. Rajamani, R., Cho, Y.: ‘Existence and design of observers for nonlinear systems: relation to distance to unobservability’, Int. J. Control, 1998, 69, (5), pp. 717731.
    44. 44)
      • 44. Blanke, M., Kinnaert, M., Lunze, J., et al: ‘Diagnosis and fault-tolerant control’ (Springer, 2006, 2nd edn.).
    45. 45)
      • 45. Billings, S.A., Wei, H.L.: ‘A new class of wavelet networks for nonlinear system identification’, IEEE Trans. Neural Netw., 2005, 16, (4), pp. 862874.
    46. 46)
      • 46. Hsu, C.F., Lin, C.M., Lee, T.T.: ‘Wavelet adaptive backstepping control for a class of nonlinear systems’, IEEE Trans. Neural Netw., 2006, 17, (5), pp. 11751183.
    47. 47)
      • 47. Wu, Q., Saif, M.: ‘Robust fault detection and diagnosis for a multiple satellite formation flying system using second order sliding mode and wavelet networks’. American Control Conf., New York, NY, USA, July 2007, pp. 426431.
    48. 48)
      • 48. Lin, C.M., Boldbaatar, E.A.: ‘Fault accommodation control for a biped robot using a recurrent wavelet Elman neural network’, IEEE Syst. J., 2015, PP, (99), pp. 112.
    49. 49)
      • 49. Lin, C.M., Hsu, C.F.: ‘Neural-network hybrid control for antilock braking systems’, IEEE Trans. Neural Netw., 2003, 14, (2), pp. 351359.
    50. 50)
      • 50. Peng, Y.F., Lin, C.M.: ‘Intelligent motion control of linear ultrasonic motor with H tracking performance’, IET Control Theory Appl., 2007, 1, (1), pp. 917.
    51. 51)
      • 51. Lin, C.M., Hsueh, C.S., Chen, C.H.: ‘Robust adaptive backstepping control for a class of nonlinear systems using recurrent wavelet neural network’, Neurocomputing, 2014, 142, pp. 372382.
    52. 52)
      • 52. Corless, M., Tu, J.: ‘State and input estimation for a class of uncertain systems’, Automatica, 1998, 34, (6), pp. 757764.
    53. 53)
      • 53. Li, Z., Liu, X., Fu, M., et al: ‘Global H consensus of multi-agent systems with Lipschitz non-linear dynamics’, IET Control Theory Appl., 2012, 6, (13), pp. 20412048.
    54. 54)
      • 54. Wen, G., Duan, Z., Chen, G., et al: ‘Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2014, 61, (2), pp. 499511.
    55. 55)
      • 55. Xu, X., Gao, L.: ‘Intermittent observer-based consensus control for multi-agent systems with switching topologies’, Int. J. Syst. Sci., 2016, 47, (8), pp. 18911904.
    56. 56)
      • 56. Zhao, Y., Li, Z., Duan, Z.: ‘Distributed consensus tracking of multi-agent systems with nonlinear dynamics under a reference leader’, Int. J. Control, 2013, 86, (10), pp. 18591869.
    57. 57)
      • 57. Li, Z., Ren, W., Liu, X., et al: ‘Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 17861791.
    58. 58)
      • 58. Yingwei, L., Sundararajan, N., Saratchandran, P.: ‘Identification of time-varying nonlinear systems using minimal radial basis function neural networks’, IEE Proc. Contr. Theor. Appl., 1997, 144, (2), pp. 202208.
    59. 59)
      • 59. Diao, Y., Passino, K.M.: ‘Stable adaptive control of feedback linearizable time-varying non-linear systems with application to fault-tolerant engine control’, Int. J. Control, 2004, 77, (17), pp. 14631480.
    60. 60)
      • 60. Ahmed-Ali, T., Kenné, G., Lamnabhi-Lagarrigue, F.: ‘Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer’, Neurocomputing, 2009, 72, (7), pp. 16111620.
    61. 61)
      • 61. Qiao, J., Zhang, Z., Bo, Y.: ‘An online self-adaptive modular neural network for time-varying systems’, Neurocomputing, 2014, 125, pp. 716.
    62. 62)
      • 62. Kiumarsi, B., Lewis, F.L., Levine, D.S.: ‘Optimal control of nonlinear discrete time-varying systems using a new neural network approximation structure’, Neurocomputing, 2015, 156, pp. 157165.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1645
Loading

Related content

content/journals/10.1049/iet-cta.2016.1645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address