© The Institution of Engineering and Technology
This study will investigate the distributed linear quadratic (LQ) control problem for discrete identical uncoupled multiagent systems with a global performance index coupling the behaviour of the multiple agents. An existence condition to the optimal distributed LQ controller is given first. In general, such condition can be checked by solving a discrete algebraic Riccati equation through a numerical method. When the condition fails to hold, a suboptimal distributed controller design method is proposed for a class of LQ performance. The solution can be obtained by solving two local algebraic Riccati equations whose dimension is the same as a single agent. The stability condition is given in terms of the spectrum of a matrix representing the desired sparsity pattern of the distributed controller. Comparing to the centralised control, the computation and communication complexity is much lesser. Finally, the suboptimality is parameterised, and can be measured by solving a Lyapunov equation.
References


1)

1. Borrelli, F., Keviczky, T., Balas, G.J., et al: ‘Hybrid decentralized control of large scale systems’, in Morari, M., Thiele, L. (Eds.):‘Hybrid systems: computation and control’ (Springer Verlag, New York, 2005), pp. 168–183.

2)

2. Keviczky, T., Borrelli, F., Balas, G.J., et al: ‘Decentralized receding horizon control and coordination of autonomous vehicle formations’, IEEE Trans. Control Syst. Technol., 2008, 16, pp. 19–33.

3)

3. Liu, S., Xie, L.H., Zhang, H.S.: ‘Distributed consensus for multiagent systems with delays and noises in transmission channels’, Automatica, 2011, 47, pp. 920–934.

4)

4. OlfatiSaber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multiagent systems’, Proc. IEEE, 2007, 95, pp. 215–233.

5)

5. Ren, W., Beard, R.W.: ‘Distributed consensus in multivehicle cooperative control: theory and applications’ (Springer, 2008).

6)

6. Lewis, F.L., Zhang, H., HengsterMovric, K., et al: ‘Cooperative control of multiagent systems: optimal and adaptive design approaches’ (SpringerVerlag, London, 2014).

7)

7. Gupta, V., Hassibi, B., Murray, R.M.: ‘A suboptimal algorithm to synthesize control laws for a network of dynamic agents’, Int. J. Control, 2005, 78, pp. 1302–1313.

8)

8. Dong, W.J.: ‘Distributed optimal control of multiple systems’, Int. J. Control, 2010, 83, pp. 2067–2079.

9)

9. Deshpande, P., Menon, P., Edwards, C., et al: ‘A distributed control law with guaranteed LQR cost for identical dynamically coupled linear systems’. Proc. of the 2011 American Control Conf., San Francisco, CA, July 2011, pp. 5342–5347.

10)

10. Cao, Y.C., Ren, W.: ‘Optimal linearconsensus algorithms: an LQR perspective’, IEEE Trans. Syst. Man Cybern. B Cybern., 2009, 40, pp. 819–830.

11)

11. Rogge, J, Suykens, J., Aeyels, D.: ‘Consensus over Ring Networks as a Quadratic Optimal Control Problem’. Proc. of the 4th IFAC Symp. on System, Structure and Control, Ancona, Italy, 2010, pp. 317–323.

12)

12. Deshpande, P., Menon, P., Edwards, C., et al: ‘Suboptimal distributed control law with H2 performance for identical dynamically coupled linear systems’, IET Control Theory Appl., 2012, 6, pp. 2509–2517.

13)

13. Zhang, F.F., Wang, W., Zhang, H.S.: ‘The design of distributed suboptimal controller for multiagent systems’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 2829–2842.

14)

14. Borrelli, F., Keviezky, T.: ‘Distributed LQR design for identical dynamically decoupled systems’, IEEE Trans. Autom. Control, 2008, 53, pp. 1901–1912.

15)

15. Wang, J., Xin, M.: ‘Multiagent consensus algorithm with obstacle avoidance via optimal control approach’, Int. J. Control, 2010, 83, pp. 2606–2621.

16)

16. Wang, J., Xin, M.: ‘Distributed optimal cooperative tracking control of multiple autonomous robots’, Robot. Auton. Syst., 2012, 60, pp. 572–583.

17)

17. Zhang, F.F., Wang, W., Zhang, H.S.: ‘Design and analysis of distributed optimal controller for identical multiagent systems’, Asian J. Control, 2015, 17, pp. 263–273.

18)

18. Feng, T., Zhang, H.G., Luo, Y.H., et al: ‘Distributed LQR design for multiagent systems on directed graph topologies’. Proc. of 2014 Int. Joint Conf. on Neural Networks, Beijing, China, 2014, pp. 2732–2737.

19)

19. Zhang, H.G., Feng, T., Liang, H.J., et al: ‘LQRBased Optimal Distributed Cooperative Design for Linear DiscreteTime Multiagent Systems’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, pp. 599–611.

20)

20. Wang, W., Zhang, F.F., Han, C.Y.: ‘Distributed LQR control for discretetime homogeneous systems’, Int. J. Syst. Sci., 2016, 47, pp. 3678–3687.

21)

21. Han, C.Y., Wang, W., Zhang, F.F.: ‘Distributed LQR control for scalar discretetime uncoupled identical systems’. Proc. of 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014, pp. 4250–4255.

22)

22. Naidu, D.S.: ‘Optimal control systems (Electrical Engineering series)’ (CRC Press, 2002).

23)

23. Shaked, U.: ‘Guaranteed stability margins for the discretetime linear quadratic optimal regulator’, IEEE Trans. Autom. Control, 1986, 31, pp. 162–165.

24)

24. Bourlès, H., Kosmidou, O.I.: ‘Gain and phase margins of the discretetime guaranteed cost regulator’. Proc. of the 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL, 1994, pp. 3837–3839.

25)

25. Hendricks, E., Jannerup, O., Sørensen, P.H.: ‘Linear systems control: deterministic and stochastic methods’ (SpringerVerlag, Berlin, Heidelberg, 2008).

26)

26. Lee, J.Y., Kim, J.S., Shim, H.: ‘Disc margins of the discretetime LQR and its application to consensus problem’, Int. J. Syst. Sci., 2012, 43, pp. 1891–1900.

27)

27. Wieland, P., Kim, J.S., Frank, A.: ‘On topology and dynamics of consensus among linear highorder agents’, Int. J. Syst. Sci., 2011, 42, pp. 1831–1842.

28)

28. Zhang, H., Lewis, F.L., Das, A.: ‘Optimal design for synchronization of cooperative systems: state feedback and output feedback’, IEEE Trans. Autom. Control, 2011, 56, pp. 1948–1952.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2016.1641
Related content
content/journals/10.1049/ietcta.2016.1641
pub_keyword,iet_inspecKeyword,pub_concept
6
6