Distributed linear–quadratic regulator control for discrete-time multi-agent systems

Distributed linear–quadratic regulator control for discrete-time multi-agent systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study will investigate the distributed linear quadratic (LQ) control problem for discrete identical uncoupled multi-agent systems with a global performance index coupling the behaviour of the multiple agents. An existence condition to the optimal distributed LQ controller is given first. In general, such condition can be checked by solving a discrete algebraic Riccati equation through a numerical method. When the condition fails to hold, a suboptimal distributed controller design method is proposed for a class of LQ performance. The solution can be obtained by solving two local algebraic Riccati equations whose dimension is the same as a single agent. The stability condition is given in terms of the spectrum of a matrix representing the desired sparsity pattern of the distributed controller. Comparing to the centralised control, the computation and communication complexity is much lesser. Finally, the suboptimality is parameterised, and can be measured by solving a Lyapunov equation.


    1. 1)
      • 1. Borrelli, F., Keviczky, T., Balas, G.J., et al: ‘Hybrid decentralized control of large scale systems’, in Morari, M., Thiele, L. (Eds.):‘Hybrid systems: computation and control’ (Springer Verlag, New York, 2005), pp. 168183.
    2. 2)
      • 2. Keviczky, T., Borrelli, F., Balas, G.J., et al: ‘Decentralized receding horizon control and coordination of autonomous vehicle formations’, IEEE Trans. Control Syst. Technol., 2008, 16, pp. 1933.
    3. 3)
      • 3. Liu, S., Xie, L.H., Zhang, H.S.: ‘Distributed consensus for multi-agent systems with delays and noises in transmission channels’, Automatica, 2011, 47, pp. 920934.
    4. 4)
      • 4. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, pp. 215233.
    5. 5)
      • 5. Ren, W., Beard, R.W.: ‘Distributed consensus in multi-vehicle cooperative control: theory and applications’ (Springer, 2008).
    6. 6)
      • 6. Lewis, F.L., Zhang, H., Hengster-Movric, K., et al: ‘Cooperative control of multi-agent systems: optimal and adaptive design approaches’ (Springer-Verlag, London, 2014).
    7. 7)
      • 7. Gupta, V., Hassibi, B., Murray, R.M.: ‘A suboptimal algorithm to synthesize control laws for a network of dynamic agents’, Int. J. Control, 2005, 78, pp. 13021313.
    8. 8)
      • 8. Dong, W.J.: ‘Distributed optimal control of multiple systems’, Int. J. Control, 2010, 83, pp. 20672079.
    9. 9)
      • 9. Deshpande, P., Menon, P., Edwards, C., et al: ‘A distributed control law with guaranteed LQR cost for identical dynamically coupled linear systems’. Proc. of the 2011 American Control Conf., San Francisco, CA, July 2011, pp. 53425347.
    10. 10)
      • 10. Cao, Y.C., Ren, W.: ‘Optimal linear-consensus algorithms: an LQR perspective’, IEEE Trans. Syst. Man Cybern. B Cybern., 2009, 40, pp. 819830.
    11. 11)
      • 11. Rogge, J, Suykens, J., Aeyels, D.: ‘Consensus over Ring Networks as a Quadratic Optimal Control Problem’. Proc. of the 4th IFAC Symp. on System, Structure and Control, Ancona, Italy, 2010, pp. 317323.
    12. 12)
      • 12. Deshpande, P., Menon, P., Edwards, C., et al: ‘Sub-optimal distributed control law with H2 performance for identical dynamically coupled linear systems’, IET Control Theory Appl., 2012, 6, pp. 25092517.
    13. 13)
      • 13. Zhang, F.F., Wang, W., Zhang, H.S.: ‘The design of distributed suboptimal controller for multi-agent systems’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 28292842.
    14. 14)
      • 14. Borrelli, F., Keviezky, T.: ‘Distributed LQR design for identical dynamically decoupled systems’, IEEE Trans. Autom. Control, 2008, 53, pp. 19011912.
    15. 15)
      • 15. Wang, J., Xin, M.: ‘Multi-agent consensus algorithm with obstacle avoidance via optimal control approach’, Int. J. Control, 2010, 83, pp. 26062621.
    16. 16)
      • 16. Wang, J., Xin, M.: ‘Distributed optimal cooperative tracking control of multiple autonomous robots’, Robot. Auton. Syst., 2012, 60, pp. 572583.
    17. 17)
      • 17. Zhang, F.F., Wang, W., Zhang, H.S.: ‘Design and analysis of distributed optimal controller for identical multi-agent systems’, Asian J. Control, 2015, 17, pp. 263273.
    18. 18)
      • 18. Feng, T., Zhang, H.G., Luo, Y.H., et al: ‘Distributed LQR design for multi-agent systems on directed graph topologies’. Proc. of 2014 Int. Joint Conf. on Neural Networks, Beijing, China, 2014, pp. 27322737.
    19. 19)
      • 19. Zhang, H.G., Feng, T., Liang, H.J., et al: ‘LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, pp. 599611.
    20. 20)
      • 20. Wang, W., Zhang, F.F., Han, C.Y.: ‘Distributed LQR control for discrete-time homogeneous systems’, Int. J. Syst. Sci., 2016, 47, pp. 36783687.
    21. 21)
      • 21. Han, C.Y., Wang, W., Zhang, F.F.: ‘Distributed LQR control for scalar discrete-time uncoupled identical systems’. Proc. of 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014, pp. 42504255.
    22. 22)
      • 22. Naidu, D.S.: ‘Optimal control systems (Electrical Engineering series)’ (CRC Press, 2002).
    23. 23)
      • 23. Shaked, U.: ‘Guaranteed stability margins for the discrete-time linear quadratic optimal regulator’, IEEE Trans. Autom. Control, 1986, 31, pp. 162165.
    24. 24)
      • 24. Bourlès, H., Kosmidou, O.I.: ‘Gain and phase margins of the discrete-time guaranteed cost regulator’. Proc. of the 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL, 1994, pp. 38373839.
    25. 25)
      • 25. Hendricks, E., Jannerup, O., Sørensen, P.H.: ‘Linear systems control: deterministic and stochastic methods’ (Springer-Verlag, Berlin, Heidelberg, 2008).
    26. 26)
      • 26. Lee, J.Y., Kim, J.S., Shim, H.: ‘Disc margins of the discrete-time LQR and its application to consensus problem’, Int. J. Syst. Sci., 2012, 43, pp. 18911900.
    27. 27)
      • 27. Wieland, P., Kim, J.S., Frank, A.: ‘On topology and dynamics of consensus among linear high-order agents’, Int. J. Syst. Sci., 2011, 42, pp. 18311842.
    28. 28)
      • 28. Zhang, H., Lewis, F.L., Das, A.: ‘Optimal design for synchronization of cooperative systems: state feedback and output feedback’, IEEE Trans. Autom. Control, 2011, 56, pp. 19481952.

Related content

This is a required field
Please enter a valid email address