access icon free Consensus tracking for general linear stochastic multi-agent systems: a sliding mode variable structure approach

This study deals with the consensus tracking problem for general linear multi-agent systems driven by Brownian motion. A directed graph is used to represent the communication topology of the multi-agent network. To solve the consensus tracking problem, an innovative concept of the sub-reachability of the sliding motion to approach approximately the specified sliding surface is introduced. Under the concept of sub-reachability, the sliding mode variable structure consensus tracking protocol is synthesised to guarantee the sub-reachability of the sliding motion in a finite time. By using the auxiliary function method and stochastic It integrals techniques with respect to Brownian motion, a sufficient condition for mean square asymptotic consensus tracking is derived. In particular, the consensus tracking criteria are very concise and can be implemented easily. Finally, a simulation example is utilised to illustrate the usefulness of the proposed control protocol.

Inspec keywords: variable structure systems; linear systems; multi-agent systems; Brownian motion; directed graphs; stochastic systems

Other keywords: auxiliary function method; sliding mode variable structure consensus tracking protocol; general linear stochastic multi-agent systems; sub-reachability; Brownian motion; directed graph

Subjects: Multivariable control systems; Combinatorial mathematics; Time-varying control systems; Linear control systems

References

    1. 1)
      • 1. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    2. 2)
      • 16. Hitoshi, K.: ‘Design of consensus controllers for multi-rate sampled-data strict-feedback multi-agent systems’, IFAC-PapersOnLine, 2015, 48, (18), pp. 157162.
    3. 3)
      • 22. Wu, M., Zhang, H., Yan, H., et al: ‘Self-triggered output feedback control for consensus of multi-agent systems’, Neurocomputing, 2016, 190, (19), pp. 179187.
    4. 4)
      • 24. Zou, Y., Su, X., Niu, Y.G.: 'Event-triggered distributed predictive control for the cooperation of multi-agent systems', IET Control Theory Appl., 2017, 11, (1), pp. 1016.
    5. 5)
      • 19. Fan, Y., Feng, G., Wang, Y., et al: ‘Distributed event-triggered control of multi-agent systems with combinational measurements’, Automatica, 2013, 49, (2), pp. 671675.
    6. 6)
      • 6. Qin, J.H, Gao, H.J., Yu, C.B.: ‘On discrete-time convergence for general linear multi-agent systems under dynamic topology’, IEEE Trans. Autom. Control, 2014, 59, (4), pp. 10541059.
    7. 7)
      • 23. Yang, D.P., Ren, W., Liu, X., et al: ‘Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs’, Automatica, 2016, 69, pp. 242249, https://doi.org/10.1016/j.automatica.2016.03.003.
    8. 8)
      • 4. Li, Z.K., Duan, Z.S., Chen, G.R.: ‘Consensus of multi-agent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans. Circuit Syst., 2010, 57, (1), pp. 213224.
    9. 9)
      • 34. Mao, X.R.: ‘Stochastic differential equations and applications’ (Horwood Publishing Limited 2007, Chichester, UK, 2007, 2nd edn.).
    10. 10)
      • 7. You, X., Hua, C., Peng, D., et al: ‘Leader-following consensus for multi-agent systems subject to actuator saturation with switching topologies and time-varying delays’, IET Control Theory Appl., 2016, 10, (2), pp. 144150.
    11. 11)
      • 27. Liu, S., Xie, L., Zhang, H.: ‘Distributed consensus for multi-agent systems with delays and noises in transmission channels’, Automatica, 2011, 47, (5), pp. 920934.
    12. 12)
      • 11. Yu, W., Chen, G., Cao, M.: ‘Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems’, Automatica, 2010, 46, (6), pp. 10891095.
    13. 13)
      • 17. Zhang, X.M., Han, Q.L., Zhang, B.L.: ‘An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 416.
    14. 14)
      • 31. Ren, C.E., Philip Chen, C.L.: ‘Sliding mode leader-following consensus controllers for second-order non-linear multi-agent systems’, IET Control Theory Appl., 2015, 9, (10), pp. 15441552.
    15. 15)
      • 25. Huang, M., Manton, J.H.: ‘Coordination and consensus of networked agents with noisy measurement: stochastic algorithms and asymptotic behavior’, SIAM J. Control Optim., 2009, 48, (1), pp. 134161.
    16. 16)
      • 12. Qin, J., Gao, H., Zheng, W.: ‘Second-order consensus for multi-agent systems with switching topology and communication delay’, Syst. Control Lett., 2011, 60, (6), pp. 390397.
    17. 17)
      • 9. Wen, G.H., Yu, W.W., Xia, Y.Q., et al: ‘Distributed tracking of nonlinear multiagent systems under directed switching topology: an observer-based protocol’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (1), pp. 869881.
    18. 18)
      • 13. Zhao, Y., Duan, Z.S., Wen, G.H.: ‘Finite-time consensus for second-order multi-agent systems with saturated control protocols’, IET Control Theory Appl., 2015, 9, (3), pp. 312319.
    19. 19)
      • 26. Li, T., Zhang, J.F.: ‘Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions’, Automatica, 2009, 45, (9), pp. 19291936.
    20. 20)
      • 20. Zhu, W., Jiang, Z.P.: ‘Event-based leader-following consensus of multi-agent systems with input time delay’, IEEE Trans. Autom. Control, 2015, 60, (5), pp. 13621367.
    21. 21)
      • 18. Mu, B.X., Chen, J.C., Shi, Y., et al: ‘Design and implementation of nonuniform sampling cooperative control on a group of two-wheeled mobile robots’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 50355044.
    22. 22)
      • 32. Behera, A.K., Bijnan, B.: ‘Self-triggering-based sliding-mode control for linear systems’, IET Control Theory Appl., 2015, 9, (17), pp. 25412547.
    23. 23)
      • 14. Hou, W.Y., Fu, M.Y., Zhang, H.S., et al: ‘Consensus conditions for general second order multi agent systems with communication delay’, Automatica, 2017, 75, pp. 293298, https://doi.org/10.1016/j.automatica.2016.09.042.
    24. 24)
      • 33. Liu, F., Deng, F.: ‘Variable structure control of stochastic systems’ (The South China University of Technology Press, Guangzhou, China, 1998).
    25. 25)
      • 28. Hu, J., Feng, G.: ‘Distributed tracking control of leader-follower multi-agent systems under noisy measurement’, Automatica, 2010, 46, (8), pp. 13821387.
    26. 26)
      • 15. Wu, J., Shi, Y., Li, H.X.: ‘Consensus in multi-agent systems with nonuniform sampling’, Proc. American Control Conf., 2013, (6), pp. 32603265.
    27. 27)
      • 29. Sabir, D., Wu, Q.: ‘Stochastic consensus of leader-following multi-agent systems under additive measurement noises and time-delays’, Eur. J. Control, 2015, 23, pp. 5561.
    28. 28)
      • 21. Wang, X.F., Michael, D.L.: ‘Self-triggering under state-independent disturbances’, IEEE Trans. Autom. Control, 2010, 55, (6), pp. 14941500.
    29. 29)
      • 5. Gao, Y.P., Ma, J., Zuo, M., et al: ‘Consensusability of continuous-time multi-agent systems with general linear dynamics and intermittent measurements’, IET Control Theory Appl., 2013, 7, (6), pp. 842847.
    30. 30)
      • 8. Li, H.X., Shi, Y.: ‘Robust receding horizon control for networked and distributed nonlinear systems’ (Springer, Berlin, Germany, 2017).
    31. 31)
      • 3. Ren, W., Beard, R.: ‘Distributed consensus in multi-vehicle cooperative control: theory and applications’ (Springer-Verlag London Limited 2008, London, UK, 2008).
    32. 32)
      • 10. Mu, B.X, Li, H.X., Ding, J., et al: ‘Consensus in second-order multiple flying vehicles with random delays governed by a Markov chain’, J. Franklin Inst., 2015, 352, (9), pp. 36283644.
    33. 33)
      • 30. Utkin, V.I.: ‘Variable structure systems with sliding modes’, IEEE Trans. Autom. Control, 1977, 22, (2), pp. 212222.
    34. 34)
      • 2. Jadbabaie, A., Lin, J., Morse, A.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1638
Loading

Related content

content/journals/10.1049/iet-cta.2016.1638
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading