http://iet.metastore.ingenta.com
1887

Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation

Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with both actuator drift and oscillation faults and saturation. The effects of the faults and saturation are combined into a composite non-differentiable actuator fault function, which is approximated by a differentiable function and estimated together with the system state using a non-linear unknown input observer. An adaptive sliding mode controller based on the estimates is developed to compensate the effects of the faults and saturation. Taking into account the bi-directional robustness interactions between the FE and FTC functions, an integrated design approach is proposed to obtain the observer and controller gains in a single step, so as to achieve robust overall FTC system performance. In fault-free cases, the proposed strategy can be considered as a new approach for anti-windup control to compensate the effect of input saturation. Comparative simulations are provided to verify the effectiveness of the proposed design under different actuator fault scenarios.

References

    1. 1)
      • 1. Edwards, C., Lombaerts, T., Smaili, H.: ‘Fault tolerant flight control: a benchmark challenge’ (Springer Science & Business Media, 2010), vol. 399.
    2. 2)
      • 2. Zolghadri, A., Henry, D., Cieslak, J., et al: ‘Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles’ (Springer, 2014).
    3. 3)
      • 3. Patton, R.J.: ‘Fault-tolerant control’, in Baillieul, J., Samad, T. (Eds.): ‘Encyclopedia of systems and control’ (Springer, 2015), pp. 422428.
    4. 4)
      • 4. Hua, M.D., Hamel, T., Morin, P., et al: ‘Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles’, IEEE Control Syst. Mag., 2013, 33, (1), pp. 6175.
    5. 5)
      • 5. Chen, M., Ge, S., Ren, B.: ‘Robust attitude control of helicopters with actuator dynamics using neural networks’, IET Control Theory Appl., 2010, 4, (12), pp. 28372854.
    6. 6)
      • 6. Alexis, K., Nikolakopoulos, G., Tzes, A.: ‘Model predictive quadrotor control: attitude, altitude and position experimental studies’, IET Control Theory Appl., 2012, 6, (12), pp. 18121827.
    7. 7)
      • 7. Li, Z., Yu, J., Xing, X., et al: ‘Robust output-feedback attitude control of a three-degree-of-freedom helicopter via sliding-mode observation technique’, IET Control Theory Appl., 2015, 9, (11), pp. 16371643.
    8. 8)
      • 8. Izaguirre Espinosa, C., Muñoz Vázquez, A.J., Sánchez Orta, A., et al: ‘Attitude control of quadrotors based on fractional sliding modes: theory and experiments’, IET Control Theory Appl., 2016, 10, (7), pp. 825832.
    9. 9)
      • 9. Vachtsevanos, G., Tang, L., Drozeski, G., et al: ‘From mission planning to flight control of unmanned aerial vehicles: strategies and implementation tools’, Annu. Rev. Control, 2005, 29, (1), pp. 101115.
    10. 10)
      • 10. Ducard, G.J.: ‘Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles’ (Springer Science & Business Media, 2009).
    11. 11)
      • 11. Qi, X., Theilliol, D., Qi, J., et al: ‘Fault diagnosis and fault tolerant control methods for manned and unmanned helicopters: a literature review’. Proc. SysToler., IEEE, 2013, pp. 132139.
    12. 12)
      • 12. Valavanis, K.P., Vachtsevanos, G.J.: ‘Handbook of unmanned aerial vehicles’ (Springer Publishing Company Incorporated, 2014).
    13. 13)
      • 13. Qi, X., Qi, J., Theilliol, D., et al: ‘A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles’, J. Intell. Robot. Syst., 2014, 73, (1-4), pp. 535555.
    14. 14)
      • 14. Apkarian, J.: ‘3-DOF helicopter reference manual’ (Quanser Consulting Inc., Canada, 2006).
    15. 15)
      • 15. Shan, J., Liu, H.T., Nowotny, S.: ‘Synchronised trajectory-tracking control of multiple 3-DOF experimental helicopters’, IET Control Theory Appl., 2005, 152, (6), pp. 683692.
    16. 16)
      • 16. Zheng, B., Zhong, Y.: ‘Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 660670.
    17. 17)
      • 17. Meza Sanchez, M., Aguilar, L.T., Orlov, Y.: ‘Output sliding mode-based stabilization of underactuated 3-DOF helicopter prototype and its experimental verification’, J. Franklin Inst., 2015, 352, (4), pp. 15801594.
    18. 18)
      • 18. Chen, F., Zhang, K., Jiang, B., et al: ‘Adaptive sliding mode observer-based robust fault reconstruction for a helicopter with actuator fault’, Asian J. Control, 2016, 18, (4), pp. 15581565.
    19. 19)
      • 19. Afonso, R.J.M., Galvão, R.K.H.: ‘Predictive control of a helicopter model with tolerance to actuator faults’. Proc. SysTol., IEEE, 2010, pp. 744751.
    20. 20)
      • 20. Chen, F., Hou, R., Jiang, B., et al: ‘Study on fast terminal sliding mode control for a helicopter via quantum information technique and nonlinear fault observer’, Int. J. Innov. Comput. Inf. Control, 2013, 9, (8), pp. 34373447.
    21. 21)
      • 21. Wang, Z., Chen, F., Jiang, B.: ‘An improved nonlinear model and adaptive fault-tolerant control for a twin rotor helicopter’. Proc. 33rd Chinese Control Conf. IEEE, 2014, pp. 32083212.
    22. 22)
      • 22. Chen, M., Shi, P., Lim, C.C.: ‘Adaptive neural fault-tolerant control of a 3-DOF model helicopter system’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (2), pp. 260270.
    23. 23)
      • 23. de Loza, A.F., Cieslak, J., Henry, D., et al: ‘Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification’, Automatica, 2015, 59, pp. 200205.
    24. 24)
      • 24. Lan, J., Patton, R.J.: ‘A new strategy for integration of fault estimation within fault-tolerant control’, Automatica, 2016, 69, pp. 4859.
    25. 25)
      • 25. Lan, J., Patton, R.J.: ‘Integrated fault estimation and fault-tolerant control for uncertain Lipschitz nonlinear systems’, Int. J. Robust Nonlinear, 2017, 25, (5), pp. 761780.
    26. 26)
      • 26. Kiefer, T., Graichen, K., Kugi, A.: ‘Trajectory tracking of a 3-DOF laboratory helicopter under input and state constraints’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 944952.
    27. 27)
      • 27. Zheng, Z., Sun, L., Zou, Y.: ‘Attitude tracking control of a 3-DOF helicopter with actuator saturation and model uncertainties’. Proc. 34th Chinese Control Conf., IEEE, 2015, pp. 56415646.
    28. 28)
      • 28. Edwards, C., Spurgeon, S.: ‘Sliding mode control: theory and applications’ (CRC Press, 1998).
    29. 29)
      • 29. Goupil, P.: ‘Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy’, Control Eng. Pract., 2010, 18, (9), pp. 11101119.
    30. 30)
      • 30. Li, Y.X., Yang, G.H.: ‘Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (5), pp. 729740.
    31. 31)
      • 31. Li, Y.X., Yang, G.H.: ‘Robust adaptive fault-tolerant control for a class of uncertain nonlinear time delay systems’, IEEE Trans. Syst. Man Cybern. Syst., 2016, doi: 10.1109/TSMC.2016.2634080.
    32. 32)
      • 32. Freidovich, L.B., Khalil, H.K.: ‘Performance recovery of feedback-linearization-based designs’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 23242334.
    33. 33)
      • 33. Zhou, K., Doyle, J.C., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, NJ, 1996), vol. 40.
    34. 34)
      • 34. Gahinet, P., Nemirovskii, A., Laub, A.J., et al: ‘The LMI control toolbox’. Proc. IEEE Conf. Decis. Control IEEE, 1994, vol. 3, pp. 20382041.
    35. 35)
      • 35. He, W., Dong, Y., Sun, C.: ‘Adaptive neural impedance control of a robotic manipulator with input saturation’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (3), pp. 334344.
    36. 36)
      • 36. Tarbouriech, S., Turner, M.: ‘Anti-windup design: an overview of some recent advances and open problems’, IET Control Theory Appl., 2009, 3, (1), pp. 119.
    37. 37)
      • 37. Boyd, S.P., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (SIAM, 1994), vol. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1602
Loading

Related content

content/journals/10.1049/iet-cta.2016.1602
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address