Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Implicit iterative algorithms with a tuning parameter for discrete stochastic Lyapunov matrix equations

Loading full text...

Full text loading...

/deliver/fulltext/iet-cta/11/10/IET-CTA.2016.1601.html;jsessionid=1hn5uvgrwdhvf.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cta.2016.1601&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Gershon, E., Shaked, U., Yaesh, I.: ‘H control and filtering of discrete-time stochastic systems with multiplicative noise’, Bull. Inst. Politeh. ‘Gheorghe Gheorghiu-Dej’ Bucur. Ser. Autom., 2001, 37, pp. 409417.
    2. 2)
      • 6. Feng, J.E., Lam, J., Xu, S., et al: ‘Optimal stabilizing controllers for linear discrete-time stochastic systems’, Optim. Control Appl. Methods, 2008, 29, pp. 243253.
    3. 3)
      • 12. Ding, F., Chen, T.: ‘Gradient based iterative algorithms for solving a class of matrix equations’,IEEE Trans. Autom. Control, 2005, 50, (8), pp. 12161221.
    4. 4)
      • 10. Li, Z.Y., Wang, Y., Zhou, B., et al: ‘Detectability and observability of discrete-time stochastic systems and their application’, Automatica, 2009, 45, (5), pp. 13401346.
    5. 5)
      • 8. Zhang, W., Chen, B.S.: ‘On stabilizability and exact observability of stochastic systems with their applications’, Automatica, 2004, 40, pp. 8794.
    6. 6)
      • 4. Huang, L., Hjalmarsson, H., Koeppl, H.: ‘Almost sure stability and stabilization of discrete-time stochastic systems’, Syst. Control Lett., 2015, 82, pp. 2632.
    7. 7)
      • 5. Kubrusly, C.S., Costa, O.L.V.: ‘Mean square stability conditions for discrete stochastic bilinear systems’, IEEE Trans. Autom. Control, 1985, AC-30, (11), pp. 10821087.
    8. 8)
      • 7. Rami, M.A., Zhou, X.Y., Xu, S.: ‘Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls’,IEEE Trans. Autom. Control, 2000, 45, (6), pp. 11311143.
    9. 9)
      • 13. Ding, F., Liu, P.X., Ding, J.: ‘Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle’, Appl. Math. Comput., 2008, 197, pp. 4150.
    10. 10)
      • 9. Zhang, W., Zhang, H., Chen, B.S.: ‘Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 16301642.
    11. 11)
      • 2. Xu, S., Lam, J., Chen, T.: ‘Robust H control for uncertain discrete stochastic time-delay systems’, Syst. Control Lett., 2004, 51, pp. 203215.
    12. 12)
      • 11. Deng, F., Feng, Z., Liu, Y.: ‘Solution to matrix equation ATP+PA+i=1mFiTPFi=Q (in Chinese)’, Control Theory Appl., 1996, 13, (2), pp. 163168.
    13. 13)
      • 3. Sheng, L., Zhang, W., Gao, M.: ‘Mixed H2/H control of time-varying stochastic discrete-time systems under uniform detectability’, IET Control Theory Appl., 2014, 8, (17), pp. 18661874.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1601
Loading

Related content

content/journals/10.1049/iet-cta.2016.1601
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address