Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method

Sliding mode control for non-linear networked control systems subject to packet disordering via prediction method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates sliding mode control (SMC) for non-linear networked control systems (NCSs) subject to packet disordering as well as external disturbances. The main objectives of the proposed method are to predict packet disordering and to stabilise the NCSs in case of the unknown packet disordering in the future. Firstly, linearisation of non-linear systems and the technology of adopting the newest control input with a stochastic parameter are employed to model the system as a linear Markovian jumping system. Secondly, with the application of a time series prediction model, the phenomenon of disordering better under the novel measurement is portrayed. Then, robust SMC is designed by solving the linear matrix inequalities (LMIs). Finally, examples with sampled disordering packets are simulated to illustrate the effectiveness and advantages of the proposed method.


    1. 1)
      • 1. Bennett, J.C.R., Partridge, C., Shectman, N.: ‘Packet reordering is not pathological network behavior’, IEEE/ACM Trans. Netw., 1999, 7, pp. 789798.
    2. 2)
      • 2. Wang, Y.L., Yang, G.H.: ‘H of networked control systems with delay and packet disordering via predictive method’, J. Franklin Inst., 2007, 350, pp. 15961616.
    3. 3)
      • 3. Song, Y., Wang, J., Shi, Y., et al.: ‘H control of networked control systems with packet disordering with an improved prediction-based method’, Int. J. Control Autom. Syst., 2011, 9, pp. 834842.
    4. 4)
      • 4. Yang, M., Ru, J., Li, X.R., et al.: ‘Predicting Internet end-to-end delay: a multiple-model approach’, IEEE INFOCOM, Miami, Florida, USA, March 2005, pp. 28152819.
    5. 5)
      • 5. Ye, X., Meng, Q.H., Liu, P.X., et al.: ‘Statistical analysis and prediction of round trip delay for internet-based teleoperation’. Int. Conf. on Intelligent Robots and Systems, EPFL, Lausanne, Switzerland, October 2002, pp. 29993004.
    6. 6)
      • 6. Wang, G.L., Li, B.Y., Zhang, Q.L., et al.: ‘A partially delay-dependent and disordered controller design for discrete-time delayed systems’, Int. J. Robust Nonlinear Control, 2016. Doi: 10.1002/rnc.3703..
    7. 7)
      • 7. Li, J.N., Zhang, Q.L., Wang, Y.L., et al.: ‘H control of networked control systems with packet disordering’, IET Control Theory Appl., 2009, 3, pp. 14631475.
    8. 8)
      • 8. Li, J.N., Er, M.J., Yu, H.B.: ‘Sampling and control strategy networked control systems subject to packet disordering’, IET Control Theory Appl., 2016, 10, pp. 674683.
    9. 9)
      • 9. Xie, L.H., De Souza, C.E.: ‘Robust H control for linear systems with norm-bounded time-varying uncertainty’, IEEE Trans. Autom. Control, 1992, 37, pp. 11881191.
    10. 10)
      • 10. Sun, X.M., Liu, K.Z., Wen, C., et al.: ‘Predictive control of nonlinear continuous networked control systems with large time-varying transmission delays and transmission protocols’, Automatica, 2016, 64, pp. 7685.
    11. 11)
      • 11. Hu, S., Yin, X., Zhang, Y., et al.: ‘Further results on memory control of nonlinear discrete-time networked control systems with random input delay’, Nonlinear Dyn., 2014, 77, pp. 15311545.
    12. 12)
      • 12. Delavar, R., Tavassoli, B., Beheshti, M.T.H.: ‘Improved stability analysis of nonlinear networked control systems over multiple communication links’, IEEE Trans. Autom. Control, 2015, 59, pp. 511515.
    13. 13)
      • 13. Hou, H.Z., Zhang, Q.L.: ‘Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control’, ISA Trans., 2016, 65, pp. 96108.
    14. 14)
      • 14. Yan, X., Spurgeon, S.K., Edwards, C.: ‘Variable structure control of complex systems: analysis and design’ (Springer International Publishing, Germany, 2017, 1st edn.).
    15. 15)
      • 15. Li, J., Zhang, Q.L., Yan, X., et al.: ‘Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm’, IET Control Theory Appl., 2017, 11, pp. 11341143.
    16. 16)
      • 16. Chen, B., Niu, Y.G., Zou, Y.: ‘Sliding mode control for stochastic Markovian jumping systems with incomplete transition rate’, IET Control Theory Appl., 2013.
    17. 17)
      • 17. Yan, M., Shi, Y.: ‘Robust discrete-time sliding mode control for uncertain systems with time-varying state delay’, IET Control Theory Appl., 2008, 2, pp. 662674.
    18. 18)
      • 18. Jia, T., Niu, Y.G., Zou, Y.: ‘Sliding mode control for stochastic systems subject to packet losses’, Inf. Sci., 2012, 217, pp. 117126.
    19. 19)
      • 19. Niu, Y., Ho, D.W.C., Lam, J.: ‘Robust integral sliding mode control for uncertain stochastic systems with time-varying delay’, Automatica, 2005, 41, pp. 873880.
    20. 20)
      • 20. Hu, J., Wang, Z., Niu, Y., et al.: ‘Sliding mode control for uncertain discrete-time systems with Markovian jumping parameters and mixed delays’, J. Franklin Inst., 2014, 351, pp. 21852202.
    21. 21)
      • 21. Zemouche, A., Boutayeb, M.: ‘A unified H adaptive observer synthesis method for a class of systems with both Lipschitz and monotone nonlinearities’, Syst. Control Lett., 2009, 58, pp. 282288.
    22. 22)
      • 22. Wu, F., Grigoriadis, K.M.: ‘LPV Systems with parameter-varying time delays: analysis and control’, Automatica, 2001, 37, pp. 221229.
    23. 23)
      • 23. Box, G.E.P., David, A.P.: ‘Distribution of residual autocorrelations in autoregressive-integrated moving average time series models’, J. Am. Stat. Assoc., 1968, 65, pp. 15091526.
    24. 24)
      • 24. Shaikhet, L.: ‘Necessary and sufficient conditions of asymptotic mean square stability for stochastic linear difference equations’, Appl. Math. Lett., 1997, 10, pp. 111115.
    25. 25)
      • 25. Yue, D., Han, Q.L., Peng, C.: ‘State feedback controller design of networked control systems’, IEEE Trans. Circuits Syst., 2010, 51, pp. 640644.
    26. 26)
      • 26. Zhang, Q.L., Li, L., Yan, X.G., et al.: ‘Sliding mode control for singular stochastic Markovian jump systems with uncertainties’, Automatica, 2017, 79, pp. 2734.
    27. 27)
      • 27. Zhang, Q.L., Li, J., Song, Z.: ‘Sliding mode control for discrete-time descriptor Markovian jump systems with two Markov chains’, Opt. Lett., 2016. DOI: 10.1007/s11590-016-1085-6..
    28. 28)
      • 28. Gao, W.: ‘Variable structure control of discrete-time systems’, IEEE Trans. Ind. Electron., 1995, 42, pp. 117122.
    29. 29)
      • 29. Niu, Y., Ho, D.W.C.: ‘Design of sliding mode control subject to packet losses’, IEEE Trans. Automatic Control, 2010, 55, pp. 26232628.
    30. 30)
      • 30. Yang, M., Ru, J., Chen, H.: ‘A statistical study’. The Annual Review of Communications, Chicago, Illinois, May 2005, pp. 665667..

Related content

This is a required field
Please enter a valid email address