Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Complex-domain stability criteria for fractional-order linear dynamical systems

This paper proposes stability criteria claimed in complex domains for dynamical systems that are described by fractional commensurate order linear time-invariant (FCO-LTI) state-space equations (thus endowed with FCO transfer functions) by means of the argument principle in complex analysis. Based on appropriate Cauchy integral contours or their shifting ones, the stability conditions are necessary and sufficient, without inter-domain transformation and independent of pole/eigenvalue computing and distribution testing. The proposed criteria are implementable graphically with locus plotting as using Nyquist-like criteria or numerically without locus plotting. The criteria apply to a variety of FCO-LTI systems, which can be single and multiple in fractional calculus, scalar and multivariable in input/output dimensionality. The criteria can also be exploited in regular-order systems without modification. Case studies are included to illustrate the main results.

References

    1. 1)
      • 21. Shi, P., Li, F.B., Wu, L.G., et al.: ‘Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems, IEEE Trans. Neural Netw. Learn. Syst., 2016. doi: 10.1109/TNNLS.2016.2573853..
    2. 2)
      • 10. Podlubny, I.: ‘Fractional-order differential equations’ (Academic Press, San Diego, 1999).
    3. 3)
      • 12. Chen, Y.Q., Xue, D.: ‘Fractional order control – A tutorial’, Proc. 2009 American Control Conf.2009, pp. 13971411.
    4. 4)
      • 4. Padula, F., Visioli, A.: ‘Tunning rules for optimal PID and fractinal-order PID controllers’, J. Process. Control, 2011, 21, pp. 6981.
    5. 5)
      • 11. Biswas, K., Sen, S., Dutta, P.K.: ‘Realization of a constant phase element and its performance study in a differentiabtor circuit’, IEEE Trans. Circuits Syst. I, 2006, 53, (9), pp. 802807.
    6. 6)
      • 6. Ramezanian, H., Balochian, S., Zare, A.: ‘Design of optimal fractional-order PID controllers using partice swarm optimization for automatic voltage regulator (AVR) system’, J. Control Autom. Electric. Syst., 2013, 24, pp. 601611.
    7. 7)
      • 3. Li, M.D., Li, D.H., Wang, J., et al.: ‘Active disturbance rejection control for fractional-order system’, ISA Trans., 2013, 52, pp. 365374.
    8. 8)
      • 18. Nie, Z.Y., Wang, Q.G., Liu, R.J., et al.: ‘Idenfication and PID control for a class of delay fractional-order systems’, IEEE/CAA J. Autom. Sin., 2016, 3, (4), pp. 463467.
    9. 9)
      • 19. Huang, H.M., Long, F., Li, C.L.: ‘Stabilization for a class of Markovian jump linear systems with linear fractional uncertainties’, Int J. Innov. Comput. Inf. Control, 2015, 11, (1), pp. 295307.
    10. 10)
      • 1. Fedele, G., Ferrise, A.: ‘Periodic disturbance rejection with unknown frequency and unknown plant structure’, J.Franklin Inst., 2014, 351, pp. 10741092.
    11. 11)
      • 14. Radwan, A.G., Soliman, A.M., Elwakil, A.S., et al.: ‘On the stability of linear systems with fractional-order elements’, Chaos Solitons Fract., 2009, 40, pp. 23172328.
    12. 12)
      • 24. Soorki, M.N., Tavazoei, M.S.: ‘Constrained swarm stabilization of fractional order linear time invariant swarm systems’, IEEE/CAA J. Autom. Sin., 2016, 3, (3), pp. 320331.
    13. 13)
      • 13. Alagoz, B.B.: ‘A note on robust stability analysis of fractional order interval systems by minimum argument vertex and edge polynomials’, IEEE/CAA J. Autom. Sin., 2016, 3, (4), pp. 411417.
    14. 14)
      • 8. Tavazoei, M.S.: ‘A note on fractional-order derivatives of periodic functions’, Automatica, 2010, 48, pp. 945948.
    15. 15)
      • 23. Rajas-Moreno, A.: ‘An approach to design MIMO fractional-order controllers for unstable nonlinear systems’, IEEE/CAA J. Autom. Sin., 2016, 3, (3), pp. 338344.
    16. 16)
      • 20. Tamilalagan, P., Balasubramaniam, P.: ‘Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion’, Appl. Math. Comput., 2017, 305, pp. 299307.
    17. 17)
      • 5. Podlubny, I., Petráš, I., Vinagre, B.M., O'Leary, P., Dorčák, L.: ‘Analogue realizations of fractional-order controllers’, Nonlinear Dyn., 2002, 29, pp. 281296.
    18. 18)
      • 9. Wang, J.C.: ‘Realizations of generalized warburg impedance with RC ladder networks and transmission lines’, J. Electrochem. Soc., 1987, 134, (8), pp. 19151920.
    19. 19)
      • 15. Stein, E.M., Shakarchi, R.: ‘Complex analysis’ (Princeton University Press, Princeton and Oxford, 2003).
    20. 20)
      • 17. Zhou, J., Qian, H.M., Lu, X.B.: ‘An argument-principle-based framework for structural and spectral characteristics in linear dynamical systems’, Int. J. Control, 2017. doi: 10.1080/00207179.2016.1260163..
    21. 21)
      • 7. Raynaud, H.-F., Zergainoh, A.: ‘State-space representation for fractional order controllers’, Automatica, 2000, 36, pp. 10171021.
    22. 22)
      • 2. Fedele, G., Ferrise, A.: ‘Periodic distrubance rejection for fractional-order dynamical systems’, Fract. Calcul. Appl. Anal., 2015, 18, (3), pp. 603620.
    23. 23)
      • 22. Monje, C.A., Chen, Y.Q., Vinagre, B.M., et al.: ‘Fractional-order systems and controls: fundamentals and applications’ (Springer, London and New York, 2010).
    24. 24)
      • 16. Zhou, J., Qian, H.M.: ‘Pointwise frequency responses framework for stability analysis in periodically time-varying systems’, Int. J. Syst. Sci., 2017, 48, (4), pp. 715728.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1578
Loading

Related content

content/journals/10.1049/iet-cta.2016.1578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address