access icon free Optimal disturbance rejection controllers design for synchronised output regulation of time-delayed multi-agent systems

An optimal disturbance rejection controller design method is put forward analytically for the synchronised output regulation of time-delayed multi-agent systems (MAS). All kinds of linear MAS can be described by a novel block diagram based on transfer functions in a unified framework. For each subsystem without intercommunication, the optimal output, input and balancing output–input load disturbance rejection controllers are designed independently. A filter is used to be in series with each controller to not only stabilise the whole systems but also achieve a tradeoff between nominal performance and robustness by adjusting a single tuning parameter. The proposed distributed controllers calculated by algebraic solution perform better capacity of disturbance attenuation than the conventional given-structured protocols. Two simulation examples demonstrate the validity of the new algorithm.

Inspec keywords: decentralised control; H2 control; delay systems; robust control; optimal control; transfer functions; multi-agent systems; control system synthesis; distributed control; synchronisation

Other keywords: linear MAS; disturbance attenuation capacity; robustness; time-delayed MAS; system stabilisation; balancing output-input load disturbance rejection controllers; transfer functions; unified framework; synchronised output regulation; optimal disturbance rejection controller design method; algebraic solution; single tuning parameter adjustment; block diagram; time-delayed multiagent systems; distributed H2 controllers

Subjects: Multivariable control systems; Optimal control; Distributed parameter control systems; Stability in control theory; Control system analysis and synthesis methods

References

    1. 1)
      • 16. Zhang, W.L., Liu, J.C., Wang, H.H.: ‘Multi-tracking control of heterogeneous multi-agent systems with single-input-single-output based on complex frequency domain analysis’, IET Control Theory Applic., 2016, 10, (8), pp. 861868.
    2. 2)
      • 15. Liu, C.L., Liu, F.: ‘Dynamical consensus seeking of heterogeneous multi-agent systems under input delays’, Int. J. Commun. Syst., 2013, 26, (10), pp. 12431258.
    3. 3)
      • 27. Zhou, K.M.: ‘Essentials of robust control’ (Prentice Hall, Upper Saddle River, NJ, 1998).
    4. 4)
      • 24. Grosdidier, P., Morari, M.: ‘Interaction measures for systems under decentralized control’, Automatica, 1986, 22, (3), pp. 309319.
    5. 5)
      • 8. Gattami, A., Murray, R.M.: ‘A frequency domain condition for stability of interconnected MIMO systems’. American Control Conf., 2004, pp. 37233728.
    6. 6)
      • 18. Huang, C., Ye, X.D.: ‘Cooperative output regulation of heterogeneous multi-agent systems: An H criterion’, IEEE Trans. Autom. Control, 2014, 59, (1), pp. 267273.
    7. 7)
      • 21. Peymani, E., Grip, H.F., Saberi, A., et al: ‘H almost output synchronization for heterogeneous networks of introspective agents under external disturbances’, Automatica, 2014, 50, (4), pp. 10261036.
    8. 8)
      • 14. Tian, Y.P., Liu, C.L.: ‘Consensus of multi-agent systems with diverse input and communication delays’, IEEE Trans. Autom. Control, 2008, 53, (9), pp. 21222128.
    9. 9)
      • 22. Horn, R.A., Johhson, C.R.: ‘Matrix analysis’ (Cambridge University Press, 1985).
    10. 10)
      • 3. Peymani, E., Fossen, T.I.: ‘Leader-follower formation of marine craft using constraint forces and lagrange multipliers’. IEEE Conf. on Decision and Control, 2012, pp. 24472452.
    11. 11)
      • 23. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476.
    12. 12)
      • 9. Li, S.B., Wang, J., Luo, X.Y., et al: ‘A new framework of consensus protocol design for complex multi-agent systems’, Syst. Control Lett., 2011, 60, (1), pp. 1926.
    13. 13)
      • 20. Morari, M., Zafiriou, E.: ‘Robust process control’ (Prentice Hall, 1989).
    14. 14)
      • 2. Garone, E., Gasparri, A., Lamonaca, F.: ‘Clock synchronization protocol for wireless sensor networks with bounded communication delays’, Automatica, 2015, 59, pp. 6072.
    15. 15)
      • 13. Arcak, M.: ‘Passivity as a design tool for group coordination’. American Control Conf., 2006, pp. 2934.
    16. 16)
      • 10. Yang, S.P., Xu, J.X.: ‘Improvements on ”A new framework of consensus protocol design for complex multi-agent systems”’, Syst. Control Lett., 2012, 61, (9), pp. 945949.
    17. 17)
      • 25. Maciejowski, J.M.: ‘Multivariable feedback design’ (Addison-Wesley Publisher, 1989).
    18. 18)
      • 19. Li, Z.K., Duan, Z.S., Chen, G.R.: ‘On H and H2 performance regions of multi-agent systems’, Automatica, 2011, 47, (4), pp. 797803.
    19. 19)
      • 7. Su, Y.F., Huang, J.: ‘Cooperative global robust output regulation for nonlinear uncertain multi-agent systems in lower triangular form’, IEEE Trans. Autom. Control, 2015, 60, (9), pp. 23782389.
    20. 20)
      • 26. Zhang, W.D., Ou, L.L., Gu, D.Y.: ‘Algebraic solution to H2 control problems. I. The scalar case’, Ind. Eng. Chem. Res., 2006, 45, (21), pp. 71517162.
    21. 21)
      • 6. Ding, Z.T.: ‘Consensus output regulation of a class of heterogeneous nonlinear systems’, IEEE Trans. Autom. Control, 2013, 58, (10), pp. 26482653.
    22. 22)
      • 4. Hong, Y.G., Wang, X.L., Jiang, Z.P.: ‘Distributed output regulation of leader-follower multi-agent systems’, Int. J. Robust Nonlinear Control, 2013, 23, (1), pp. 4866.
    23. 23)
      • 5. Kim, H., Shim, H., Seo, J.H.: ‘Output consensus of heterogeneous uncertain linear multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 200206.
    24. 24)
      • 1. Hu, J.W., Zhao, X.: ‘Distributed cooperative control for deployment and task allocation of unmanned aerial vehicle networks’, IET Control Theory Applic., 2013, 7, (11), pp. 15741582.
    25. 25)
      • 12. Liang, J.L., Wang, Z.D., Liu, Y.R., et al: ‘Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances’, IEEE Trans. Syst. Man Cybern., 2008, 38, (4), pp. 10731083.
    26. 26)
      • 17. Cao, W.J., Zhang, J.H., Ren, W.: ‘Leader-follower consensus of linear multi-agent systems with unknown external disturbances’, Syst. Control Lett., 2015, 82, pp. 6470.
    27. 27)
      • 11. Xiao, F., Wang, L.: ‘Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 18041816.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1528
Loading

Related content

content/journals/10.1049/iet-cta.2016.1528
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading