Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Model predictive control for pre-compensated voltage mode controlled DC–DC converters

This study introduces the use of model predictive control (MPC) to improve the performance of pre-compensated power supplies, and in particular of DC–DC converters, by dynamically modifying their output voltage reference. The importance of developing controllers for pre-compensated converters is twofold. First, the hierarchical structure is particularly useful when the primal controller is already coded, or hardware based, and cannot be changed. Second, the double-loop and, possible, multi-rate structure represents a computationally cheaper alternative to a direct MPC that would replace the primal controller and would require a much higher sampling frequency. In this study a MPC controller has been applied for the regulation of a pre-compensated synchronous DC–DC buck converter. The aim is to improve the performance of standard voltage mode control (VMC), without replacing the linear controller and without drastically affecting the computational burden. The algorithm has been tested both in simulation and experimentally, on commercially available hardware. The results show the performance improvement with respect to the standard VMC, as well as the feasibility of the proposed approach in an embedded platform. Tests with different primal controller tunings, and unknown varying loads, confirm the advantages of the method.

References

    1. 1)
      • 18. Karamanakos, P., Geyer, T., Oikonomou, N., et al: ‘Direct model predictive control: a review of strategies that achieve long prediction intervals for power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 3243.
    2. 2)
      • 30. Kogiso, K., Hirata, K.: ‘Reference governor for constrained systems with time-varying references’, Robot. Auton. Syst., 2009, 57, (3), pp. 289295.
    3. 3)
      • 24. Barcelli, D., Bernardini, D., Bemporad, A.: ‘Synthesis of networked switching linear decentralized controllers’. 49th IEEE Conf. on Decision and Control (CDC), December 2010, pp. 24802485.
    4. 4)
      • 16. Beccuti, A., Mariethoz, S., Cliquennois, S., et al: ‘Explicit model predictive control of DC-DC switched-mode power supplies with extended Kalman filtering’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18641874.
    5. 5)
      • 13. Cimini, G., Bernardini, D., Bemporad, A., et al: ‘Online model predictive torque control for permanent magnet synchronous Motors’. IEEE Int. Conf. on Industrial Technology (ICIT), 2015, March 2015, pp. 23082313.
    6. 6)
      • 31. Kolmanovsky, I., Garone, E., Di Cairano, S.: ‘Reference and command governors: A tutorial on their theory and automotive applications’. American Control Conf. (ACC), 2014, June 2014, pp. 226241.
    7. 7)
      • 32. Cavanini, L., Cimini, G., Ippoliti, G.: ‘Model predictive control for the reference regulation of current mode controlled dc-dc converters’. 2016 IEEE 14th Int. Conf. on Industrial Informatics (INDIN), July 2016, pp. 7479.
    8. 8)
      • 7. Scoltock, J., Geyer, T., Madawala, U.K.: ‘Model predictive direct power control for grid-connected NPC converters’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53195328.
    9. 9)
      • 12. Cimini, G., Bemporad, A.: ‘Exact complexity certification of active-set methods for quadratic programming’, IEEE Trans. Autom. Control, 2017, PP, (99), pp. 11.
    10. 10)
      • 36. Truntic, M., Milanovic, M.: ‘Voltage and current-mode control for a buck-converter based on measured integral values of voltage and current implemented in FPGA’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 66866699.
    11. 11)
      • 29. Kurokawa, F., Yamanishi, A., Hirotaki, S.: ‘A reference modification model digitally controlled DC-DC converter for improvement of transient response’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 871883.
    12. 12)
      • 4. Cimini, G., Ippoliti, G., Orlando, G., et al: ‘Sensorless power factor control for mixed conduction mode boost converter using passivity-based control’, IET Power Electron., 2014, 7, (12), pp. 29882995.
    13. 13)
      • 35. Sira-Ramirez, H., Silva-Ortigoza, R.: ‘Control design techniques in power electronics devices, ser. power systems’ (Springer, London, 2006).
    14. 14)
      • 27. Jade, S., Hellstrom, E., Larimore, J., et al: ‘Reference governor for load control in a multicylinder recompression HCCI engine’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 14081421.
    15. 15)
      • 9. Cortes, P., Kazmierkowski, M., Kennel, R., et al: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324.
    16. 16)
      • 1. Vazquez, S., Leon, J., Franquelo, L., et al: ‘Model predictive control: a review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 1631.
    17. 17)
      • 21. Bemporad, A.: ‘Reference governor for constrained nonlinear systems’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 415419.
    18. 18)
      • 33. Sha, J., Xu, J., Zhong, S., et al: ‘Control pulse combination-based analysis of pulse train controlled DCM switching DC-DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 246255.
    19. 19)
      • 37. Ridley, R.: ‘A new, continuous-time model for current-mode control power converters’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 271280.
    20. 20)
      • 15. Bemporad, A., Morari, M., Dua, V., et al: ‘The explicit linear quadratic regulator for constrained systems’, Automatica, 2002, 38, (1), pp. 320.
    21. 21)
      • 3. Cimini, G., Ippoliti, G., Orlando, G., et al: ‘A unified observer for robust sensorless control of DC-DC converters’, Control Eng. Pract., 2017, 61, pp. 2127.
    22. 22)
      • 5. Bordons, C., Montero, C.: ‘Basic principles of MPC for power converters: bridging the gap between theory and practice’, IEEE Ind. Electron. Mag., 2015, 9, (3), pp. 3143.
    23. 23)
      • 38. Texas Instrument: ‘PTD08A010WAD Datasheet’. Available at https://www.ti.com/lit/ds/symlink/ptd08a010w.pdf, 2007, [Online; Revisied Febraury 2010].
    24. 24)
      • 19. Preindl, M., Bolognani, S.: ‘Comparison of direct and PWM model predictive control for power electronic and drive systems’. IEEE Twenty-Eighth Annual Applied Power Electronics Conf. and Exposition (APEC), 2013, March 2013, pp. 25262533.
    25. 25)
      • 20. Aguilera, R., Lezana, P., Quevedo, D.: ‘Switched model predictive control for improved transient and steady-state performance’, IEEE Trans. Ind. Inf., 2015, 11, (4), pp. 968977.
    26. 26)
      • 17. Kim, S.K., Park, C.R., Kim, J.S., et al: ‘A stabilizing model predictive controller for voltage regulation of a DC/DC boost converter’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 20162023.
    27. 27)
      • 23. Bemporad, A., Casavola, A., Mosca, E.: ‘Nonlinear control of constrained linear systems via predictive reference management’, IEEE Trans. Autom. Control, 1997, 42, (3), pp. 340349.
    28. 28)
      • 10. Rodriguez, J., Kazmierkowski, M., Espinoza, J., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    29. 29)
      • 14. Zhang, Z., Wang, F., Sun, T., et al: ‘FPGA based experimental investigation of a quasi-centralized dmpc scheme for a back-to-back converter’, IEEE Trans. Power Electron., 2015, PP, (99), pp. 11.
    30. 30)
      • 26. Oh, S.-R., Agrawal, S.: ‘A reference governor-based controller for a cable robot under input constraints’, IEEE Trans. Control Syst. Technol., 2005, 13, (4), pp. 639645.
    31. 31)
      • 34. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer, Norwell, MA, 2001).
    32. 32)
      • 22. Garone, E., Nicotra, M.: ‘Explicit reference governor for constrained nonlinear systems’, IEEE Trans. Autom. Control, 2015, PP, (99), pp. 11.
    33. 33)
      • 25. Vermillion, C., Sun, J., Butts, K.: ‘Predictive control allocation for a thermal management system based on an inner loop reference model - design, analysis, and experimental results’, IEEE Trans. Control Syst. Technol., 2011, 19, (4), pp. 772781.
    34. 34)
      • 28. Kurokawa, F., Sakemi, J., Yamanishi, A., et al: ‘A new quick transient response digital control dc-dc converter with smart bias function’. 2011 IEEE 33rd Int. Telecommunications Energy Conf. (INTELEC), October 2011, pp. 17.
    35. 35)
      • 2. Mariethoz, S., Almer, S., Baja, M., et al: ‘Comparison of hybrid control techniques for buck and boost DC-DC converters’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11261145.
    36. 36)
      • 11. Algreer, M., Armstrong, M., Giaouris, D.: ‘Adaptive PD+I control of a switch-mode DC–DC power converter using a recursive FIR predictor’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 21352144.
    37. 37)
      • 8. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 29672986.
    38. 38)
      • 6. Kouro, S., Perez, M., Rodriguez, J., et al: ‘Model predictive control: MPC's role in the evolution of power electronics’, IEEE Ind. Electron. Mag., 2015, 9, (4), pp. 821.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1501
Loading

Related content

content/journals/10.1049/iet-cta.2016.1501
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address