http://iet.metastore.ingenta.com
1887

Non-linear current-mode control for boost power converters: a dynamic backstepping approach

Non-linear current-mode control for boost power converters: a dynamic backstepping approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A control scheme for boost power converters based on current-mode control is given. The proposed methodology relies on the design of two feedback loops. An outer loop for steady state error compensation using a proportional-integral action and a non-linear inner loop for current tracking. A dynamic backstepping controller with a well-defined region of attraction, ensuring asymptotic stability via a Lyapunov function, is achieved. The closed-loop system performance is evaluated through experimental results for a 130 W boost power converter with the controller implemented in a dSPACE platform, where precise regulation, tracking and robust behaviour with respect to large unknown load variations are proven successful.

References

    1. 1)
      • 1. Bacha, S., Munteanu, I., Bratcu, A.I.: ‘Power electronic converters modeling and control: with cases studies’ (Springer, 2014).
    2. 2)
      • 2. Bose, B.K.: ‘Global energy scenario and impact of power electronics in 21st century’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26382651.
    3. 3)
      • 3. Aamir, M., Kalwar, K.A., Mekhilef, S.: ‘Review: uninterruptible power supply (UPS) system’, Renew. Sustain. Energy Rev., 2016, 58, pp. 13951410.
    4. 4)
      • 4. Ortiz-Lopez, M.G., Leyva-Ramos, J., Diaz-Saldierna, L.H., et al: ‘Current-mode control for a quadratic boost converter with a single switch’. Power Electronics Specialists Conf., Orlando, USA, June 2007, pp. 26522657.
    5. 5)
      • 5. Leyva-Ramos, J.: ‘A design criteria for the current gain in current-programmed regulators’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 568573.
    6. 6)
      • 6. Morales-Saldaña, J.A., Leyva-Ramos, J., Carbajal-Gutiérrez, E.E., et al: ‘Average current-mode control scheme for a quadratic buck converter with a single switch’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 485490.
    7. 7)
      • 7. Morales-Saldaña, J.A., Galarza-Quirino, R., Leyva-Ramos, J., et al: ‘Multiloop controller design for a quadratic boost converter’, IET Electr. Power Appl., 2007, 1, (3), pp. 362367.
    8. 8)
      • 8. Ortega, R., Loría, J.A., Nicklasson, P.J., et al: ‘Passivity-based control of Euler–Lagrange systems: mechanical, electrical and electromechanical applications’ (Springer, 1998).
    9. 9)
      • 9. Escobar, G., Ortega, R., Sira-Ramírez, H., et al: ‘An experimental comparison of several nonlinear controllers for power converters’, IEEE Control Syst., 1999, 19, (1), pp. 6682.
    10. 10)
      • 10. Hernandez-Gomez, M., Ortega, R., Lamnahbi-Lagarrigue, F., et al: ‘Adaptive PI stabilization of switched power converters’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 688698.
    11. 11)
      • 11. Konstantopoulos, G.C., Alexandridis, A.T.: ‘Non-linear voltage regulator design for DC/DC boost converters used in photovoltaic applications: analysis and experimental results’, IET Renew. Power Gener., 2013, 7, (3), pp. 296308.
    12. 12)
      • 12. Son, Y.I., Kim, I.H.: ‘Complementary PID controller to passivity-based nonlinear control of boost converters with inductor resistance’, IEEE Trans. Control Syst. Technol., 2012, 20, (3), pp. 826834.
    13. 13)
      • 13. Zeng, J., Zhang, Z., Qiao, W.: ‘An interconnection and damping assignment passivity-based controller for a DC–DC boost converter with a constant power load’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 23142322.
    14. 14)
      • 14. Ramirez, V., Ortega, R., Bethoux, O., et al: ‘A dynamic router for microgrid applications: Theory and experimental results’, Control Eng. Pract., 2014, 27, pp. 2331.
    15. 15)
      • 15. Cisneros, R., Pirro, M., Bergna, G., et al: ‘Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters’, Control Eng. Pract., 2015, 43, pp. 109119.
    16. 16)
      • 16. Sira-Ramirez, H., Silva-Ortigoza, R.: ‘Control design techniques in power electronics devices’ (Springer, 2006).
    17. 17)
      • 17. Van Gorp, J., Defoort, M., Djemai, M., et al: ‘Fault detection based on higher-order sliding mode observer for a class of switched linear systems’, IET Control Theory Appl., 2015, 9, (15), pp. 22492256.
    18. 18)
      • 18. Cervantes, I., Mendoza-Torres, A., Emadi, A., et al: ‘Robust switched current control of converters’, IET Control Theory Appl., 2013, 7, (10), pp. 13981407.
    19. 19)
      • 19. Seleme, S.I., Rosa, A.H.R., Morais, L.M.F., et al: ‘Evaluation of adaptive passivity-based controller for power factor correction using a boost converter’, IET Control Theory Appl., 2012, 6, (14), pp. 21682178.
    20. 20)
      • 20. Maccari, L.A., Montagner, V.F., Pinheiro, H., et al: ‘Robust H2 control applied to boost converters: design, experimental validation and performance analysis’, IET Control Theory Appl., 2012, 6, (12), pp. 18811888.
    21. 21)
      • 21. Chen, Z.: ‘Double loop control of buck-boost converters for wide range of load resistance and reference voltage’, IET Control Theory Appl., 2011, 6, (7), pp. 900910.
    22. 22)
      • 22. El Fadil, H., Giri, F.: ‘Backstepping Based control of PWM DC-DC boost power converters’. IEEE Int. Sym. on Industrial Electronics, Vigo, Spain, June 2007, pp. 395400.
    23. 23)
      • 23. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, 2000).
    24. 24)
      • 24. Marquez, H.: ‘Nonlinear control systems’ (Wiley, 2003).
    25. 25)
      • 25. Krstić, M., Kanellakopoulos, I., Kokotović, P.V.: ‘Nonlinear and adaptive control design’ (John Wiley & and Sons, 1995).
    26. 26)
      • 26. Sepulchre, R., Jankovic, M., Kokotović, P.V.: ‘Constructive nonlinear control’ (Springer, 1997).
    27. 27)
      • 27. Casagrande, D., Astolfi, A., Ortega, R.: ‘Global stabilization of non-globally linearizable triangular systems: application to transient stability of power systems’. IEEE Conf. Decision and Control and European Control Conf., Orlando, USA, December 2011, pp. 331336.
    28. 28)
      • 28. Casagrande, D., Astolfi, A., Ortega, R., et al: ‘A solution to the problem of transient stability of multimachine power systems’. IEEE Conf. Decision and Control, Maui, USA, December 2012, pp. 17031708.
    29. 29)
      • 29. Casagrande, D., Astolfi, A., Langarica, D., et al: ‘Solution to the multi-machine transient stability problem and simulated validation in realistic scenarios’, IET. Gener. Transm. Distrib., 2014, 8, (8), pp. 13921405.
    30. 30)
      • 30. Langarica-Córdoba, D., Ortega, R., Casagrande, D.: ‘Transient stabilization of multimachine power systems: towards a global decentralized solution’, Eur. J. Control, 2015, 26, pp. 4455.
    31. 31)
      • 31. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications and design’ (John Wiley & Sons, 2003, 3rd edn.).
    32. 32)
      • 32. Skvarenina, T.: ‘The power electronics hand book’ (CRC Press, 2002).
    33. 33)
      • 33. Middlebrook, R., Cuk, S.: ‘A general unified approach to modelling switching-converter power stages’. IEEE Power Electronics Specialists Conf., Cleveland, USA, June 1976, pp. 1834.
    34. 34)
      • 34. Ang, S., Oliva, A.: ‘Power-switching converters’ (CRC Press, 2005).
    35. 35)
      • 35. Rashid, M.H.: ‘Power electronics handbook: devices, circuits, and applications’ (Elsevier, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1490
Loading

Related content

content/journals/10.1049/iet-cta.2016.1490
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address