access icon free Boundary barrier-based control of a flexible riser system

In this study, the vibration control and boundary output constraint problem of a marine riser system subjected to the disturbances are investigated. The control objective is to ensure the vibration reduction of the marine riser and the boundary output in the constrained region. A boundary control strategy is put forward to realise this objective through combining with Lyapunov's direct method, barrier-based control and backstepping technique. In addition, the disturbance observer including barrier term is developed to cope with the effects of unknown external disturbance. With the designed control strategy, the closed-loop riser system is ensured to be uniformly bounded stable through rigorous Lyapunov analysis without violation of the output constraint. Finally, the effectiveness of the designed boundary control strategy is verified via numerical simulations.

Inspec keywords: vibration control; Lyapunov methods; oil drilling; control nonlinearities; observers; control system synthesis; closed loop systems; stability; flexible structures

Other keywords: barrier term; uniformly bounded stable system; boundary output constraint problem; control objective; unknown external disturbance; boundary barrier-based control; output constraint; Lyapunov analysis; backstepping technique; closed-loop riser system; control strategy design; vibration reduction; vibration control; disturbance observer; marine riser system; Lyapunov direct method; flexible riser system

Subjects: Mechanical variables control; Multivariable control systems; Vibrations and shock waves (mechanical engineering); Mining, oil drilling and natural gas industries; Control system analysis and synthesis methods; Control technology and theory (production); Control applications in mining, oil and natural gas technology; Simulation, modelling and identification; Nonlinear control systems; Stability in control theory

References

    1. 1)
      • 19. He, W., Sun, C., Ge, S.S.: ‘Top tension control of a flexible marine riser by using integral-barrier Lyapunov function’, IEEE/ASME Trans. Mechatronics, 2015, 20, (2), pp. 497505.
    2. 2)
      • 8. Kong, L.Y., Parker, R.G.: ‘Vibration of an axially moving beam wrapping on fixed pulleys’, J. Sound Vib., 2005, 280, (3-5), pp. 10661074.
    3. 3)
      • 30. Guo, B.Z., Jin, F.F.: ‘Backstepping approach to the arbitrary decay rate for Euler–Bernoulli beam under boundary feedback’, Int. J. Control, 2010, 83, (10), pp. 20982106.
    4. 4)
      • 23. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, New York, USA, 1995).
    5. 5)
      • 11. Liu, Y., Zhao, Z.J., Guo, F., et al: ‘Vibration control of an axially moving accelerated/decelerated belt system with input saturation’, Trans. Inst. Meas. Control, 2016, Doi: 10.1177/0142331216665685.
    6. 6)
      • 3. Do, K., Pan, J.: ‘Boundary control of transverse motion of marine risers with actuator dynamics’, J. Sound Vib., 2008, 318, (4-5), pp. 768791.
    7. 7)
      • 20. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, (4), pp. 146154.
    8. 8)
      • 16. He, W., He, X.Y., Ge, S.S.: ‘Vibration control of flexible marine riser systems with input saturation’, IEEE/ASME Trans. Mechatronics, 2016, 21, (1), pp. 254265.
    9. 9)
      • 13. Balas, M.J.: ‘Active control of flexible systems’, J. Opt. Theory Appl., 1978, 25, (3), pp. 415436.
    10. 10)
      • 24. Zhang, L.X., Lam, J.: ‘Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16951701.
    11. 11)
      • 2. He, W., Ge, S.S., How, B.V., et al: ‘Robust adaptive boundary control of a flexible marine riser with vessel dynamics’, Automatica, 2011, 47, (4), pp. 722732.
    12. 12)
      • 4. Liu, Z.J., Liu, J.K.: ‘Boundary control of a flexible robotic manipulator with output constraints’, Asian J. Control, 2017, 19, (1), pp. 332345.
    13. 13)
      • 14. Meirovitch, L., Baruh, H.: ‘On the problem of observation spillover in self-adjoint distributed systems’, J. Opt. Theory Appl., 1983, 30, (2), pp. 269291.
    14. 14)
      • 15. Liu, Y., Zhao, Z.J., Guo, F.: ‘Adaptive Lyapunov-based backstepping control for an axially moving system with input saturation’, IET Control Theory Appl., 2016, 10, (16), pp. 20832092.
    15. 15)
      • 25. Feng, Z.G., Lam, J., Shu, Z.: ‘Dissipative control for linear systems by static output feedback’, Int. J. Syst. Sci., 2013, 44, (8), pp. 15661576.
    16. 16)
      • 36. Liu, Y, Zhao, Z.J., He, W.: ‘Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control’, ISA Trans., 2016, 64, pp. 394404.
    17. 17)
      • 7. He, W., Zhang, S.: ‘Control design for nonlinear flexible wings of a robotic aircraft’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 351357.
    18. 18)
      • 1. Choi, J.Y., Hong, K.S., Yang, K.J.: ‘Exponential stabilization of an axially moving tensioned strip by passive damping and boundary control’, J. Vib. Control, 2004, 10, (5), pp. 661682.
    19. 19)
      • 6. He, W., Ouyang, Y.C., Hong, J.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 4859.
    20. 20)
      • 41. Krstic, M.: ‘Systematization of approaches to adaptive boundary stabilization of PDEs’, Int. J. Robust Nonlinear Control, 2006, 16, (16), pp. 801818.
    21. 21)
      • 38. Rahn, C.D.: ‘Mechatronic control of distributed noise and vibration’ (Springer-Verlag, New York, USA, 2001).
    22. 22)
      • 21. He, W., Ge, S.S., Huang, D.Q.: ‘Modeling and vibration control for a nonlinear moving string with output constraint’, IEEE/ASME Trans. Mechatronics, 2015, 20, (4), pp. 18861897.
    23. 23)
      • 34. Ren, B., Ge, S.S., Tee, K.P., et al: ‘Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function’, IEEE Trans. Neural Netw., 2010, 21, (8), pp. 13391345.
    24. 24)
      • 27. Smyshlyaev, A., Guo, B.Z., Krstic, M.: ‘Arbitrary decay rate for Euler–Bernoulli beam by backstepping boundary feedback’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 11341140.
    25. 25)
      • 29. Krstic, M., Smyshlyaev, A.: ‘Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays’, Syst. Control Lett., 2008, 57, (9), pp. 750758.
    26. 26)
      • 35. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    27. 27)
      • 17. Wu, H.N., Wang, J.W., Li, H.X.: ‘Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems’, Automatica, 2012, 48, (10), pp. 25352543.
    28. 28)
      • 31. Balogh, A., Krstic, M.: ‘Stability of partial difference equations governing control gains in infinite-dimensional backstepping’, Syst. Control Lett., 2004, 51, (2), pp. 151164.
    29. 29)
      • 43. Smith, G.D.: ‘Numerical solutions of partial differential equations: finite difference method’ (Oxford University Press, Oxford, 1978).
    30. 30)
      • 18. Zhao, Z.J., Liu, Y., He, W., et al: ‘Adaptive boundary control of an axially moving belt system with high acceleration/deceleration’, IET Control Theory Appl., 2016, 10, (11), pp. 12991306.
    31. 31)
      • 33. Tee, K.P., Ge, S.S., Tay, E.H.: ‘Barrier Lyapunov functions for the control of output-constrained nonlinear systems’, Automatica, 2009, 45, (4), pp. 918927.
    32. 32)
      • 40. He, W., Zhang, S., Ge, S.S.: ‘Robust adaptive control of a thruster assisted position mooring system’, Automatica, 2014, 50, (7), pp. 18431851.
    33. 33)
      • 22. Zhao, Z.J., Liu, Y., Guo, F., et al: ‘Modelling and control for a class of axially moving nonuniform system’, Int. J. Syst. Sci., 2017, 48, (4), pp. 849861.
    34. 34)
      • 9. He, W., Ge, S.S.: ‘Vibration control of a flexible beam with output constraint’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 50235030.
    35. 35)
      • 26. Krstic, M., Smyshlyaev, A.: ‘Boundary control of PDEs: a course on backstepping designs’ (SIAM, Philadelphia, USA, 2008).
    36. 36)
      • 37. Liu, Y., Zhao, Z.J., He, W.: ‘Boundary control of an axially moving accelerated/decelerated belt system’, Int. J. Robust Nonlinear Control, 2016, 26, (17), pp. 38493866.
    37. 37)
      • 39. Smyshlyaev, A., Krstic, M.: ‘Adaptive control of parabolic PDEs’ (Princeton University Press, Princeton, USA, 2010).
    38. 38)
      • 42. Liu, Z.J., Liu, J.K., He, W.: ‘Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint’, Automatica, 2017, 77, (3), pp. 302310.
    39. 39)
      • 5. Yang, H.J., Liu, J.K.: ‘Distributed piezoelectric vibration control for a flexible-link manipulator based on an observer in the form of partial differential equations’, J. Sound Vib., 2016, 363, (3), pp. 7796.
    40. 40)
      • 28. Liu, W.J., Krstic, M.: ‘Backstepping boundary control of Burgers’ equation with actuator dynamics', Syst. Control Lett., 2000, 41, (4), pp. 291303.
    41. 41)
      • 10. Guo, T.L., Wang, X.Y., Li, S.H.: ‘Stabilisation for a class of high-order non-linear systems with output constraints’, IET Control Theory Appl., 2016, 10, (16), pp. 21282135.
    42. 42)
      • 12. Logan, J.: ‘Applied mathematics’ (Wiley, New York, USA, 2006).
    43. 43)
      • 32. Tee, K.P., Ren, B., Ge, S.S.: ‘Control of nonlinear systems with time-varying output constraints’, Automatica, 2011, 47, (11), pp. 25112516.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1484
Loading

Related content

content/journals/10.1049/iet-cta.2016.1484
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading