http://iet.metastore.ingenta.com
1887

Discrete-time speed servo system design – a comparative study: proportional–integral versus integral sliding mode control

Discrete-time speed servo system design – a comparative study: proportional–integral versus integral sliding mode control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work presents a comparative study of two approaches for design of high performance discrete-time velocity servo systems with induction motors (IMs). The first approach uses the conventional proportional–integral controller with one-step delayed disturbance compensator (OSDC). The OSDC is based on measurements of the control input and plant states. The second approach uses the discrete-time integral sliding mode (DISM) controller with a first-order disturbance compensator, which is based on switching function signal measurement only. The controlled plant, consisting of IM in the commonly used indirect field-oriented control (IFOC) scheme, is approximated by first-order dynamic model for control design purpose. Comparisons are conducted through simulations considering an ideal case (without unmodelled dynamics) and a regular one, using MATLAB/Simulink models of real IFOC structure elements. The experimental investigation is conducted as well. The performed tests show that both controllers enhanced with the corresponding disturbance compensators are suitable for high-performance control systems design if speed measurement is near noise-free case, with better performance from DISM. If Euler backward difference is applied for speed detection, both control systems need some retuning in order to make a compromise between chattering and tracking accuracy.

References

    1. 1)
      • 1. Eun, Y., Kim, J.H, Kim, K., et al: ‘Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism’, IEEE Trans. Control Syst. Technol., 1999, 7, (4), pp. 414423.
    2. 2)
      • 2. Xi, X.C., Zhao, W.S., Poo, A.N.: ‘Improving CNC contouring accuracy by robust digital integral sliding mode control’, Int. J. Mach. Tools Manuf., 2015, 88, pp. 5161.
    3. 3)
      • 3. Hikita, H.: ‘Servomechanisms based on sliding mode control’, Int. J. Control, 1988, 48, (2), pp. 435447.
    4. 4)
      • 4. Dorf, R.C., Bishop, R.H.: ‘Modern control systems’ (Pearson Education, New York, 1995, 2010, 12th edn).
    5. 5)
      • 5. Fujimoto, H., Hori, Y., Kawamura, A.: ‘Perfect tracking control based on multirate feedforward control with generalized sampling periods’, IEEE Trans Ind. Electron., 2001, 48, (3), pp. 636644.
    6. 6)
      • 6. Jin, Q.B., Liu, Q.: ‘IMC-PID design based on model matching approach and closed-loop shaping’, ISA Trans., 2014, 53, (2), pp. 462473.
    7. 7)
      • 7. Ting, C.S., Chang, Y.N., Shi, B.W., et al: ‘Adaptive back stepping control for permanent magnet linear synchronous motor servo drive’, IET Electr. Power Appl., 2015, 9, (3), pp. 265279.
    8. 8)
      • 8. Precup, R.E., Preitl, S.: ‘PI-Fuzzy controllers for integral plants to ensure robust stability’, Inf. Sci., 2007, 177, (20), pp. 44104429.
    9. 9)
      • 9. Lino, P., Maione, G., Stasi, S., et al: ‘Synthesis of fractional-order PI controllers and fractional-order filters for industrial electrical drives’, IEEE/CAA J. Autom. Sinica, 2017, 4, (1), pp. 5868.
    10. 10)
      • 10. Topalov, A.V., Cascella, G.L., Giordano, V., et al: ‘Sliding mode neuro-adaptive control of electrical drives’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 671679.
    11. 11)
      • 11. Utkin, V.I.: ‘Sliding mode control design principles and application to electric drives’, IEEE Trans. Ind. Electron., 1993, 40, (1), pp. 2336.
    12. 12)
      • 12. Utkin, V.I.: ‘Sliding modes in control optimization’ (Springer, Berlin Heidelberg, New York, 1992).
    13. 13)
      • 13. Lin, S., Cai, Y., Yang, B., et al: ‘Electrical line-shafting control for motor speed synchronization using sliding mode controller and disturbance observer’, IET Control Theory Appl., 2016, 11, (2), pp. 205212.
    14. 14)
      • 14. Barambones, O., Garrido, A.J., Maseda, F.J.: ‘Integral sliding-mode controller for induction motor based on field-oriented control theory’, IET Control Theory Appl., 2007, 1, (3), pp. 786794.
    15. 15)
      • 15. Angulo, M.T., Carrillo-Serrano, R.V.: ‘Estimating rotor parameters in induction motors using high-order sliding mode algorithms’, IET Control Theory Appl., 2015, 9, (4), pp. 573578.
    16. 16)
      • 16. Kommuri, S.K., Rath, J.J., Veluvolu, K.C., et al: ‘Decoupled current control and sensor fault detection with second-order sliding mode for induction motor’, IET Control Theory Appl., 2015, 9, (4), pp. 608617.
    17. 17)
      • 17. Oliveira, C.M., Aguiar, M.L., Monteiro, J.R., et al: ‘Vector control of induction motor using an integral sliding mode controller with anti-windup’, J. Control Autom. Electr. Syst., 2016, 27, (2), pp. 169178.
    18. 18)
      • 18. Ferrara, A.: ‘Discussion on: ‘An adaptive variable structure control law for sensorless induction motors’, Eur. J. Control, 2007, 13, (4), pp. 393397.
    19. 19)
      • 19. Li, X.L., Park, J.G., Shin, H.B.: ‘Comparison and evaluation of anti-windup PI controllers’, J. Power Electron., 2011, 11, (1), pp. 4550.
    20. 20)
      • 20. Su, W.C., Drakunov, S.V., Ozguner, U.: ‘An 0(T2) boundary layer in sliding mode for sampled-data systems’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 482485.
    21. 21)
      • 21. Milosavljević, Č., Perunicić-Draženović, B., Veselić, B.: ‘Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 920927.
    22. 22)
      • 22. Abidi, K., Xu, J.X., Yu, X.: ‘On the discrete-time integral sliding mode control’, IEEE Trans. Autom. Control, 2007, 52, (4), pp. 709715.
    23. 23)
      • 23. Bartolini, G., Ferrara, A., Utkin, V.I.: ‘Adaptive sliding mode control in discrete time systems’, Automatica, 1995, 31, (5), pp. 769773.
    24. 24)
      • 24. Golo, G., Milosavljević, Č.: ‘Robust discrete-time chattering free sliding mode control’, Syst. Control Lett., 2000, 41, (1), pp. 1928.
    25. 25)
      • 25. Milosavljević, Č., Peruničić-Draženović, B., Veselić, B., et al: ‘A new design of servomechanisms with digital sliding mode’, Electr. Eng., 2007, 89, (3), pp. 233244.
    26. 26)
      • 26. Lješnjanin, M., Peruničić, B., Milosavljević, Č., et al: ‘Disturbance compensation in digital sliding mode’. Int. Conf. EUROCON, Lisboa, Portugal, 27–29 April 2011, CD, paper 171.
    27. 27)
      • 27. Veselić, B., Peruničić, B., Milosavljević, Č.: ‘High-performance position control of induction motor using discrete-time sliding mode control’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38093817.
    28. 28)
      • 28. Draženović, B.: ‘The invariance conditions in variable structure systems’, Automatica, 1969, 5, (3) pp. 287295.
    29. 29)
      • 29. Middleton, R.H., Goodwin, G.C.: ‘Improved finite word length characteristics in digital control using delta operators’, IEEE Trans. Autom. Control, 1986, 31, (3), pp. 10151021.
    30. 30)
      • 30. Shao, X., Sun, D.: ‘Development of a new robot controller architecture with FPGA-based IC design for improved high-speed performance’, IEEE Trans. Ind. Inf., 2007, 3, (4), pp. 312321.
    31. 31)
      • 31. Lee, J.H.: ‘A new robust digital sliding mode control with disturbance observer for uncertain discrete time systems’, J. IKEEE, 2006, 15, (2), pp. 3744.
    32. 32)
      • 32. Milosavljević, Č., Perunicić-Draženović, B., Veselić, B., et al: ‘High-performance discrete-time chattering-free sliding mode-based speed control of induction motor’, Electr. Eng., 2017, 99, (2), pp. 583593.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1480
Loading

Related content

content/journals/10.1049/iet-cta.2016.1480
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address