http://iet.metastore.ingenta.com
1887

Cooperative robust containment control for general discrete-time multi-agent systems with external disturbance

Cooperative robust containment control for general discrete-time multi-agent systems with external disturbance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the cooperative containment control problem for heterogeneous discrete-time linear multi-agent systems. The structures of the systems are uncertain, and there exists more than one leader in the authors' systems. For these leaders, it is unnecessary to establish links exchanging information between them. Instead, the authors assume that at least one leader has directed paths to all the follower nodes. A distributed discrete-time compensator is presented to estimate the convex hull information of the leaders. Then, based on the estimation of the convex hull information of the reference outputs, they design a novel distributed internal model compensator to tackle the uncertain parts of the dynamics. Finally, a distributed dynamic output feedback approach is utilised to study the distributed systems with external disturbance under the directed communication topology. A numerical example is provided to illustrate the validity of the theoretical results.

References

    1. 1)
      • 1. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, pp. 15201533.
    2. 2)
      • 2. Zhang, H., Liu, D., Luo, Y.: ‘Adaptive dynamic programming for control: algorithms and stability’ (Springer Science & Business Media, 2012).
    3. 3)
      • 3. Li, P., Lam, J.: ‘Decentralized control of compartmental networks with H tracking performance’, Trans. Ind. Electron., 2013, 60, pp. 546553.
    4. 4)
      • 4. Li, H., Wu, C., Shi, P., et al: ‘Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach’, IEEE Trans. Cybern., 2015, 45, pp. 23782389.
    5. 5)
      • 5. Lu, R., Shi, P., Su, H., et al: ‘Synchronization of general chaotic neural networks with nonuniform sampling and packet missing: a switched system approach’, IEEE Trans. Neural Netw. Learn. Syst., 2016, DOI: 10.1109/TNNLS.2016.2636163.
    6. 6)
      • 6. Cheng, L., Wang, Y., Ren, W., et al: ‘On convergence rate of leader-following consensus of linear multi-agent systems with communication noises’, IEEE Trans. Autom. Control, 2016, 61, pp. 35863592.
    7. 7)
      • 7. Fax, A.J., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, pp. 14651476.
    8. 8)
      • 8. Cheng, L., Hou, Z., Tan, M.: ‘A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies’, IEEE Trans. Autom. Control, 2014, 59, pp. 261267.
    9. 9)
      • 9. Yang, H., Jiang, B., Cocquempot, V., et al: ‘Stabilization of switched nonlinear systems with all unstable modes: application to multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, pp. 22302235.
    10. 10)
      • 10. Yang, H., Jiang, B., Zhang, H.: ‘Stabilization of non-minimum phase switched nonlinear systems with application to multi-agent systems’, Syst. Control Lett., 2012, 61, pp. 10231031.
    11. 11)
      • 11. Liu, L., Zhou, Q., Liang, H., et al: ‘Stability and stabilization of nonlinear switched systems under average dwell time’, Appl. Math. Comput., 2017, 298, pp. 7794.
    12. 12)
      • 12. Wang, J., Gao, Y., Qiu, J., et al: ‘Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches’, IET Control Theory Appl., 2017, 11, pp. 12051213.
    13. 13)
      • 13. Yao, J., Jiao, Z., Ma, D., et al: ‘High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties’, IEEE/ASME Trans. Mechatronics, 2014, 19, pp. 633641.
    14. 14)
      • 14. Yao, J., Jiao, Z., Ma, D.: ‘Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping’, IEEE Trans. Ind. Electron., 2014, 61, pp. 62856293.
    15. 15)
      • 15. Zhang, H., Zhang, J., Yang, G., et al: ‘Leader-based optimal coordination control for the consensus problem of multiagent differential games via fuzzy adaptive dynamic programming’, IEEE Trans. Fuzzy Syst., 2015, 23, pp. 152163.
    16. 16)
      • 16. Zhou, X., Shi, P., Lim, C.C., et al: ‘Event based guaranteed cost consensus for distributed multi-agent systems’, J. Franklin Inst., 2015, 352, pp. 35463563.
    17. 17)
      • 17. Lynch, N.A.: ‘Distributed algorithms’ (Morgan Kaufmann, 1996).
    18. 18)
      • 18. Gu, G., Marinovici, L., Lewis, F.L.: ‘Consensusability of discrete-time dynamic multiagent systems’, IEEE Trans. Autom. Control, 2012, 57, pp. 20852089.
    19. 19)
      • 19. Hengster-Movric, K., You, K., Lewis, F.L., et al: ‘Synchronization of discrete-time multi-agent systems on graphs using Riccati design’, Automatica, 2013, 49, pp. 414423.
    20. 20)
      • 20. Li, Z., Wen, G., Duan, Z., et al: ‘Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs’, IEEE Trans. Autom. Control, 2015, 60, pp. 11521157.
    21. 21)
      • 21. Wang, X., Li, S., Lam, J.: ‘Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances’, Automatica, 2016, 74, pp. 3037.
    22. 22)
      • 22. Wang, X., Li, S., Yu, X., et al: ‘Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances’, Trans. Autom. Control, DOI: 10.1109/TAC.2016.2638966.
    23. 23)
      • 23. Feng, G., Zhang, T.: ‘Output regulation of discrete-time piecewise-linear systems with application to controlling chaos’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, pp. 249253.
    24. 24)
      • 24. Hong, Y., Hu, J., Gao, L.: ‘Tracking control for multi-agent consensus with an active leader and variable topology’, Automatica, 2006, 42, pp. 11771182.
    25. 25)
      • 25. Song, Q., Liu, F., Cao, J., et al: ‘M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics’, IEEE Trans. Cybern., 2013, 43, pp. 16881697.
    26. 26)
      • 26. Hong, Y., Chen, G., Bushnell, L.: ‘Distributed observers design for leader-following control of multi-agent networks’, Automatica, 2008, 44, pp. 846850.
    27. 27)
      • 27. Zhang, H., Feng, T., Yang, G., et al: ‘Distributed cooperative optimal control for multiagent systems on directed graphs: an inverse optimal approach’, IEEE Trans. Cybern., 2015, 45, pp. 13151326.
    28. 28)
      • 28. Wu, Y., Meng, X., Xie, L., et al: ‘An input-based triggering approach to leader-following problems’, Bul. Inst. Politeh. ‘Gheorghe Gheorghiu-Dej’ Bucur. Ser. Autom., 2017, 75, pp. 221228.
    29. 29)
      • 29. Wu, Y., Lu, R., Shi, P., et al: ‘Adaptive output synchronization of heterogeneous network with an uncertain leader’, Bul. Inst. Politeh. ‘Gheorghe Gheorghiu-Dej’ Bucur. Ser. Autom., 2017, 76, pp. 183192.
    30. 30)
      • 30. Cheng, L., Wang, Y., Ren, W., et al: ‘Containment control of multiagent systems with dynamic leaders based on a PIn-type approach’, IEEE Trans. Cybern., 2016, 46, pp. 30043017.
    31. 31)
      • 31. Cao, Y., Ren, W.: ‘Containment control with multiple stationary or dynamic leaders under a directed interaction graph’. CDC/CCC, Shanghai, December 2009, pp. 30143019.
    32. 32)
      • 32. Mu, X., Zheng, B.: ‘Containment control of second-order discrete-time multi-agent systems with Markovian missing data’, IET Control Theory Appl., 2015, 9, pp. 12291237.
    33. 33)
      • 33. Xu, C., Zheng, Y., Su, H., et al: ‘Necessary and sufficient conditions for distributed containment control of multi-agent systems without velocity measurement’, IET Control Theory Appl., 2014, 8, pp. 17521759.
    34. 34)
      • 34. Zhou, H., Wang, Z., Liu, Z., et al: ‘Containment control for multi-agent systems via impulsive algorithms without velocity measurements’, IET Control Theory Appl., 2014, 8, pp. 20332044.
    35. 35)
      • 35. Wang, X., Li, S., Shi, P.: ‘Distributed finite-time containment control for double-integrator multiagent systems’, IEEE Trans. Cybern., 2014, 44, pp. 15181528.
    36. 36)
      • 36. Rong, L., Lu, J., Xu, S., et al: ‘Reference model-based containment control of multi-agent systems with higher-order dynamics’, IET Control Theory Appl., 2014, 8, pp. 796802.
    37. 37)
      • 37. Su, H., Jia, G., Chen, M.Z.Q.: ‘Semi-global containment control of multi-agent systems with input saturation’, IET Control Theory Appl., 2014, 8, pp. 22292237.
    38. 38)
      • 38. Su, H., Chen, M.Z.Q.: ‘Multi-agent containment control with input saturation on switching topologies’, IET Control Theory Appl., 2015, 9, pp. 399409.
    39. 39)
      • 39. Dong, X., Meng, F., Shi, Z., et al: ‘Output containment control for swarm systems with general linear dynamics: a dynamic output feedback approach’, Syst. Control Lett., 2014, 71, pp. 3137.
    40. 40)
      • 40. Chu, H., Gao, L., Zhang, W.: ‘Distributed adaptive containment control of heterogeneous linear multi-agent systems: an output regulation approach’, IET Control Theory Appl., 2016, 10, pp. 95102.
    41. 41)
      • 41. Huang, J.: ‘The cooperative output regulation problem of discrete-time linear multi-agent systems by the adaptive distributed observer’, IEEE Trans. Autom. Control, 2017, 62, pp. 19791984.
    42. 42)
      • 42. Godsil, C.D., Royle, G., Godsil, C.: ‘Algebraic graph theory’ (Springer, New York, 2001).
    43. 43)
      • 43. Liang, H., Zhang, H., Wang, Z., et al: ‘Consensus robust output regulation of discrete-time linear multi-agent systems’, IEEE/CAA J. Autom. Sinica, 2015, 1, pp. 204209.
    44. 44)
      • 44. Kaviarasan, B., Sakthivel, R., Abbas, S.: ‘Robust consensus of nonlinear multi-agent systems via reliable control with probabilistic time delay’, Complexity, 2016, 21, pp. 138150.
    45. 45)
      • 45. Haghshenas, H., Badamchizadeh, M.A., Baradarannia, M.: ‘Containment control of heterogeneous linear multi-agent systems’, Automatica, 2015, 54, pp. 210216.
    46. 46)
      • 46. Huang, J.: ‘Nonlinear output regulation: theory and applications’ (SIAM, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1475
Loading

Related content

content/journals/10.1049/iet-cta.2016.1475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address