http://iet.metastore.ingenta.com
1887

Boundary control of a flexible crane system in two-dimensional space

Boundary control of a flexible crane system in two-dimensional space

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A flexible crane system with vibrating and varying cable is investigated in two-dimensional space. Two partial differential equations and four ordinary differential equations derived by the Hamilton's principle are used to describe the dynamics of the flexible crane system. The dynamic model of the crane system considers the variation of the tension of the cable. Boundary control design is given to suppress vibrations of the flexible crane system. The Lyapunov's direct method is employed to prove the uniform ultimate boundedness of the states of the cable system. The effectiveness and performance of the proposed control schemes are depicted via numerical simulations.

References

    1. 1)
      • 1. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, (4), pp. 146154.
    2. 2)
      • 2. Guo, B., Xu, C.-Z.: ‘On the spectrum-determined growth condition of a vibration cable with a tip mass’, IEEE Trans. Autom. Control, 2000, 45, (1), pp. 8993.
    3. 3)
      • 3. Sun, C., He, W., Hong, J.: ‘Neural network control of a flexible robotic manipulator using the lumped spring-mass model’, IEEE Trans. Syst. Man Cybern. Syst., 2017, in press, doi: 10.1109/TSMC.2016.2562506.
    4. 4)
      • 4. Wang, J.-W., Wu, H.-N., Li, H.-X.: ‘Fuzzy control design for nonlinear ode-hyperbolic pde-cascaded systems: A fuzzy and entropy-like Lyapunov function approach’, IEEE Trans. Fuzzy Syst., 2014, 22, (5), pp. 13131324.
    5. 5)
      • 5. Wu, H.-N., Wang, J.-W., Li, H.-X.: ‘Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems’, Bul. Inst. Politeh. ‘Gheorghe Gheorghiu-Dej’ Bucur. Ser. Autom., 2012, 48, (10), pp. 25352543.
    6. 6)
      • 6. He, W., Ouyang, Y., Hong, J.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 4859.
    7. 7)
      • 7. He, W., Meng, T., Huang, D., et al: ‘Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint’, IEEE Trans. Neural Netw. Learn. Syst., 2017, in press, doi: 10.1109/TNNLS.2017.2673865.
    8. 8)
      • 8. Guo, Q., Zhang, Y., Celler, B.G., et al: ‘Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 69096920.
    9. 9)
      • 9. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full-state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    10. 10)
      • 10. Peng, K., Zhang, K., You, B., et al: ‘A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes’, IEEE Trans. Ind. Electron., 2016, 64, (3), pp. 26152624.
    11. 11)
      • 11. Peng, K., Zhang, K., Dong, J., et al: ‘Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements’, Journal of the Franklin Institute, 2015, 352, (3), pp. 9871006.
    12. 12)
      • 12. He, W., Dong, Y.: ‘Adaptive fuzzy neural network control for a constrained robot using impedance learning’, IEEE Trans. Neural Netw. Learn. Syst., 2017, in press, doi: 10.1109/TNNLS.2017.2665581.
    13. 13)
      • 13. Sun, C., He, W., Ge, W., et al: ‘Adaptive neural network control of biped robots’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (2), pp. 315326.
    14. 14)
      • 14. Wu, X., Gao, D.: ‘Fault tolerance control of SOFC systems based on nonlinear model predictive control’, Int. J. Hydrog. Energy, 2017, 42, (4), pp. 22882308.
    15. 15)
      • 15. Zhang, S., Huang, D.: ‘End-point regulation and vibration suppression of a flexible robotic manipulator’, Asian J. Control, 2017, 19, (1), pp. 245254.
    16. 16)
      • 16. Zhang, L., Liu, J.: ‘Observer-based partial differential equation boundary control for a flexible two-link manipulator in task space’, IET Control Theory Applic., 2012, 6, (13), pp. 21202133.
    17. 17)
      • 17. Wang, J.-M., Liu, J.-J., Ren, B., et al: ‘Sliding mode control to stabilization of cascaded heat pde–ode systems subject to boundary control matched disturbance’, Automatica, 2015, 52, pp. 2334.
    18. 18)
      • 18. Pisano, A., Orlov, Y.: ‘Boundary second-order sliding-mode control of an uncertain heat process with unbounded matched perturbation’, Bul. Inst. Politeh. ‘Gheorghe Gheorghiu-Dej’ Bucur. Ser. Autom., 2012, 48, (8), pp. 17681775.
    19. 19)
      • 19. He, W., Zhang, S.: ‘Control design for nonlinear flexible wings of a robotic aircraft’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 351357.
    20. 20)
      • 20. Paranjape, A.A., Guan, J., Chung, S.-J., et al: ‘PDE boundary control for flexible articulated wings on a robotic aircraft’, IEEE Trans. Robot., 2013, 29, (3), pp. 625640.
    21. 21)
      • 21. He, W., Ge, S.S., How, B.V.E., et al: ‘Robust adaptive boundary control of a flexible marine riser with vessel dynamics’, Auotmatica, 2011, 47, (4), pp. 722732.
    22. 22)
      • 22. He, W., He, X., Ge, S.S.: ‘Vibration control of flexible marine riser systems with input saturation’, IEEE/ASME Trans. Mechatron., 2016, 21, (1), pp. 254265.
    23. 23)
      • 23. Wang, N., Wu, H.-N., Guo, L.: ‘Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles’, Nonlinear Dyn., 2014, 78, (3), pp. 21412159.
    24. 24)
      • 24. Hu, Q.-L., Ma, G.: ‘Adaptive variable structure controller for spacecraft vibration reduction’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (3), pp. 861876.
    25. 25)
      • 25. He, W., Ge, S.S.: ‘Vibration control of a flexible beam with output constraint’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 50235030.
    26. 26)
      • 26. Wu, H.-N., Wang, J.-W.: ‘Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE–beam systems’, Automatica, 2014, 50, (11), pp. 27872798.
    27. 27)
      • 27. Jin, F.-F., Guo, B.-Z.: ‘Lyapunov approach to output feedback stabilization for the Euler–Bernoulli beam equation with boundary input disturbance’, Automatica, 2015, 52, pp. 95102.
    28. 28)
      • 28. Zhang, S., He, W., Huang, D.: ‘Active vibration control for a flexible string system with input backlash’, IET Control Theory Applic., 2016, 10, (7), pp. 800805.
    29. 29)
      • 29. He, W., Meng, T.: ‘Adaptive control of a flexible string system with input hysteresis’, IEEE Trans. Control Syst. Technol., 2017, in press, doi: 10.1109/TCST.2017.2669158.
    30. 30)
      • 30. Yang, K.-J., Hong, K.-S., Matsuno, F.: ‘Robust boundary control of an axially moving string by using a pr transfer function’, IEEE Trans. Autom. Control, 2005, 50, (12), pp. 20532058.
    31. 31)
      • 31. Li, Y., Aron, D., Rahn, C.D.: ‘Adaptive vibration isolation for axially moving strings: theory and experiment’, Automatica, 2002, 38, (3), pp. 379390.
    32. 32)
      • 32. He, W., He, X., Sun, C.: ‘Vibration control of an industrial moving strip in the presence of input deadzone’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 46804689.
    33. 33)
      • 33. Yang, K.-J., Hong, K.-S., Matsuno, F.: ‘Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension’, J. Sound Vib., 2004, 273, (4-5), pp. 10071029.
    34. 34)
      • 34. Nguyen, Q.C., Hong, K.-S.: ‘Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control’, J. Sound Vib., 2010, 329, (22), pp. 45884603.
    35. 35)
      • 35. Lee, S.-Y., Mote, J.C.D.: ‘Vibration control of an axially moving string by boundary control’, J. Dyn. Syst. Meas. Control, 1994, 118, (1), pp. 6674.
    36. 36)
      • 36. Li, T., Hou, Z., Li, J.: ‘Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback’, Automatica, 2008, 44, (2), pp. 498503.
    37. 37)
      • 37. Wu, Y., Xue, X., Shen, T.: ‘Absolute stability of the axially moving Kirchhoff string with a sector boundary feedback control’, Nonlinear Dyn., 2015, 80, (1-2), pp. 922.
    38. 38)
      • 38. Nguyen, Q.C., Hong, K.-S.: ‘Longitudinal and transverse vibration control of an axially moving string’. IEEE 5th Int. Conf. on Cybernetics and Intelligent Systems, 2011, pp. 2429.
    39. 39)
      • 39. Nguyen, Q.C., Hong, K.-S.: ‘Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking’, J. Sound Vib., 2012, 331, (13), pp. 30063019.
    40. 40)
      • 40. Park, H., Hong, K.-S.: ‘Vibration control of axially moving system with variable speed, tension and length’. SICE-ICASE, 2006, Int. Joint Conf., 2006, pp. 6772.
    41. 41)
      • 41. Zhu, W.D., Ni, J.: ‘Energetics and stability of translating media with an arbitrarily varying length’, Trans. ASME. J. Vib. Acoust., 2000, 122, (3), pp. 295304.
    42. 42)
      • 42. Zhu, W.D., Zheng, N.A.: ‘Exact response of a translating string with arbitrarily varying length under general excitation’, Trans. ASME, E J. Appl. Mech., 2008, 75, (3), p. 031003.
    43. 43)
      • 43. He, W., Ge, S.S., Huang, D.: ‘Modeling and vibration control for a nonlinear moving string with output constraint’, IEEE/ASME Trans. Mechatron., 2015, 20, (4), pp. 18861897.
    44. 44)
      • 44. Wang, L.H., Hu, Z.D., Zhong, Z., et al: ‘Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily varying length’, Acta Mechanica, 2010, 214, (3-4), pp. 225244.
    45. 45)
      • 45. He, W., Nie, S., Meng, T., et al: ‘Modeling and vibration control for a moving beam with application in a drilling riser’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 10361043.
    46. 46)
      • 46. Zhu, W.D., Ni, J., Huang, J.: ‘Active control of translating media with arbitrarily varying length’, Trans. ASME J. Vib. Acoust., 2001, 123, (3), pp. 347358.
    47. 47)
      • 47. Narasimha, R.: ‘Non-linear vibration of an elastic string’, J. Sound Vib., 1968, 8, (1), pp. 134146.
    48. 48)
      • 48. Chung, J., Han, C.-S., Yi, K.: ‘Vibration of an axially moving string with geometric non-linearity and translating acceleration’, J. Sound Vib., 2001, 240, (4), pp. 733746.
    49. 49)
      • 49. Nguyen, Q.C., Hong, K.-S.: ‘Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking’, J. Sound Vib., 2012, 331, (13), pp. 30063019.
    50. 50)
      • 50. Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., et al: ‘Lyapunov based control of mechanical systems’ (Birkhauser, Boston, MA, 2000).
    51. 51)
      • 51. He, W., Sun, C., Ge, S.S.: ‘Top tension control of a flexible marine riser by using integral-barrier Lyapunov function’, IEEE/ASME Trans. Mechatron., 2015, 2, (20), pp. 497505.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1446
Loading

Related content

content/journals/10.1049/iet-cta.2016.1446
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address