http://iet.metastore.ingenta.com
1887

Control design for interval type-2 polynomial fuzzy-model-based systems with time-varying delay

Control design for interval type-2 polynomial fuzzy-model-based systems with time-varying delay

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problems of stabilisation for interval type-2 polynomial fuzzy systems with time-varying delay and parameter uncertainties are investigated. The objective is to design a state-feedback interval type-2 polynomial fuzzy controller such that the closed-loop control system is asymptotically stable. The conditions for the existence of such a controller are delay dependent and membership function dependent in terms of sum-of-squares (SOS). Based on a basic lemma to deal with the delay terms, the authors formulate and solve the problem with more flexibility due to imperfect premise matching that the number of rules and premise membership functions are not necessary the same between the interval type-2 polynomial fuzzy model and interval type-2 polynomial fuzzy controller. Piecewise linear membership functions approximations enclosing the original lower and upper membership functions are employed to facilitate the stability analysis. A numerical example indicates the effectiveness of the derived results.

References

    1. 1)
      • 1. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, (3), pp. 338353.
    2. 2)
      • 2. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, SMC-15, (1), pp. 116132.
    3. 3)
      • 3. Zhao, X., Yin, Y., Zhang, L., et al: ‘Control of switched nonlinear systems via T–S fuzzy modeling’, IEEE Trans. Fuzzy Syst., 2016, 24, (1), pp. 235241.
    4. 4)
      • 4. Zhang, L., Ning, Z., Shi, P.: ‘Input-output approach to control for fuzzy Markov jump systems with time-varying delays and uncertain packet dropout rate’, IEEE Trans. Cybern., 2015, 45, (11), pp. 24492460.
    5. 5)
      • 5. Zhang, L., Yang, T., Shi, P., et al: ‘Stability and stabilization of a class of discrete-time fuzzy systems with semi-Markov stochastic uncertainties’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (12), pp. 16421653.
    6. 6)
      • 6. Zhao, X., Zhang, L., Shi, P., et al: ‘Novel stability criteria for T–S fuzzy systems’, IEEE Trans. Fuzzy Syst., 2014, 22, (2), pp. 313323.
    7. 7)
      • 7. Feng, G.: ‘A survey on analysis and design of model-based fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 676697.
    8. 8)
      • 8. Zadeh, L.A.: ‘The concept of a linguistic variable and its application to approximate reasoning–I’, Inf. Sci., 1975, 8, (3), pp. 199249.
    9. 9)
      • 9. Jafarzadeh, S., Fadali, M.S., Sonbol, A.H.: ‘Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part I. Stability analysis’, IEEE Trans. Fuzzy Syst., 2011, 19, (6), pp. 9891000.
    10. 10)
      • 10. Jafarzadeh, S., Fadali, M.S., Sonbol, A.H.: ‘Stability analysis and control of discrete type-1 and type-2 TSK fuzzy systems: Part II. Control design’, IEEE Trans. Fuzzy Syst., 2011, 19, (6), pp. 10011013.
    11. 11)
      • 11. Li, H., Pan, Y., Zhou, Q.: ‘Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame’, IEEE Trans. Fuzzy Syst., 2015, 23, (3), pp. 719725.
    12. 12)
      • 12. Li, H., Wu, C., Shi, P., et al: ‘Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based approach’, IEEE Trans. Cybern., 2015, 45, (11), pp. 23782389.
    13. 13)
      • 13. Li, Y., Lam, H.K., Zhang, L., et al: ‘Interval type-2 fuzzy-model-based control design for time-delay systems under imperfect premise matching’. IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), 2015, pp. 16.
    14. 14)
      • 14. Li, Y., Lam, H.K.: ‘Interval type-2 fuzzy-model-based control design for systems subject to actuator saturation under imperfect premise matching’. 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 21092114.
    15. 15)
      • 15. Xiao, B., Lam, H.K., Li, H.: ‘Stabilization of interval type-2 polynomial-fuzzy-model-based control systems’, IEEE Trans. Fuzzy Syst., 2017, 25, (1), pp. 205217.
    16. 16)
      • 16. Liang, Q., Mendel, J.M.: ‘Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 551563.
    17. 17)
      • 17. Hagras, H.A.: ‘A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots’, IEEE Trans. Fuzzy Syst., 2004, 12, (4), pp. 524539.
    18. 18)
      • 18. Chen, C.S.: ‘Supervisory adaptive tracking control of robot manipulators using interval type-2 TSK fuzzy logic system’, IET Control Theory Applc., 2011, 5, (15), pp. 17961807.
    19. 19)
      • 19. Melin, P., Mendoza, O., Castillo, O.: ‘Face recognition with an improved interval type-2 fuzzy logic Sugeno integral and modular neural networks’, IEEE Trans. Syst. Man Cybern. - A Syst. Humans, 2011, 41, (5), pp. 10011012.
    20. 20)
      • 20. Yuksel, M.E., Basturk, A.: ‘Application of type-2 fuzzy logic filtering to reduce noise in color images’, IEEE Comput. Intell. Mag., 2012, 7, (3), pp. 2535.
    21. 21)
      • 21. Fadali, M.S., Jafarzadeh, S.: ‘Stability analysis of positive interval type-2 TSK systems with application to energy markets’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 10311038.
    22. 22)
      • 22. Boran, F.E., Akay, D.: ‘A generic method for the evaluation of interval type-2 fuzzy linguistic summaries’, IEEE Trans. Cybern., 2014, 44, (9), pp. 16321645.
    23. 23)
      • 23. Liang, Q., Mendel, J.M.: ‘Interval type-2 fuzzy logic systems: theory and design’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 535550.
    24. 24)
      • 24. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley-Interscience, 2001).
    25. 25)
      • 25. Lam, H.K., Seneviratne, L.D.: ‘Stability analysis of interval type-2 fuzzy-model-based control systems’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2008, 38, (3), pp. 617628.
    26. 26)
      • 26. Lam, H.K., Li, H., Deters, C., et al: ‘Control design for interval type-2 fuzzy systems under imperfect premise matching’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 956968.
    27. 27)
      • 27. Li, H., Sun, X., Wu, L., et al: ‘State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 19431957.
    28. 28)
      • 28. Lu, Q., Shi, P., Lam, H.K., et al: ‘Interval type-2 fuzzy model predictive control of nonlinear networked control systems’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 23172328.
    29. 29)
      • 29. Li, H., Wu, C., Yin, S., et al: ‘Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables’, IEEE Trans. Fuzzy Syst., 2016, 24, (5), pp. 12331245.
    30. 30)
      • 30. Tanaka, K., Yoshida, H., Ohtake, H., et al: ‘A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems’, IEEE Trans. Fuzzy Syst., 2009, 17, (4), pp. 911922.
    31. 31)
      • 31. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: ‘Introducing SOSTOOLS: a general purpose sum of squares programming solver’. Proc. of the 41st IEEE Conf. Decision and Control, 2002, 2002, vol. 1, pp. 741746.
    32. 32)
      • 32. Lam, H.K., Liu, C., Wu, L., et al: ‘Polynomial fuzzy-model-based control systems: stability analysis via approximated membership functions considering sector nonlinearity of control input’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 22022214.
    33. 33)
      • 33. Lam, H.K., Tsai, S.H.: ‘Stability analysis of polynomial-fuzzy-model-based control systems with mismatched premise membership functions’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 223229.
    34. 34)
      • 34. Lam, H.K., Narimani, M., Li, H., et al: ‘Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function’, IEEE Trans. Fuzzy Syst., 2013, 21, (5), pp. 800813.
    35. 35)
      • 35. Cao, Y.Y., Frank, P.M.: ‘Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach’, IEEE Trans. Fuzzy Syst., 2000, 8, (2), pp. 200211.
    36. 36)
      • 36. Wang, R.J., Lin, W.W., Wang, W.J.: ‘Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2004, 34, (2), pp. 12881292.
    37. 37)
      • 37. Cao, Y.Y., Frank, P.M.: ‘Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models’, Fuzzy Sets Syst., 2001, 124, (2), pp. 213229.
    38. 38)
      • 38. Tian, E., Peng, C.: ‘Delay-dependent stability analysis and synthesis of uncertain T–S fuzzy systems with time-varying delay’, Fuzzy Sets Syst., 2006, 157, (4), pp. 544559.
    39. 39)
      • 39. Yoneyama, J.: ‘New robust stability conditions and design of robust stabilizing controllers for Takagi–Sugeno fuzzy time-delay systems’, IEEE Trans. Fuzzy Syst., 2007, 15, (5), pp. 828839.
    40. 40)
      • 40. Chen, B., Liu, X., Tong, S.: ‘New delay-dependent stabilization conditions of T–S fuzzy systems with constant delay’, Fuzzy Sets Syst., 2007, 158, (20), pp. 22092224.
    41. 41)
      • 41. Zhang, H., Yan, H., Yang, F., et al: ‘Quantized control design for impulsive fuzzy networked systems’, IEEE Trans. Fuzzy Syst., 2011, 19, (6), pp. 11531162.
    42. 42)
      • 42. Zhang, H., Yan, H., Liu, T., et al: ‘Fuzzy controller design for nonlinear impulsive fuzzy systems with time delay’, IEEE Trans. Fuzzy Syst., 2011, 19, (5), pp. 844856.
    43. 43)
      • 43. Li, W., Feng, Z., Sun, W., et al: ‘Admissibility analysis for Takagi–Sugeno fuzzy singular systems with time delay’, Neurocomputing, 2016, 205, pp. 336340.
    44. 44)
      • 44. Chang, W.J., Lin, C.H., Ku, C.C.: ‘Estimated state feedback fuzzy control for passive discrete time-delay multiplicative noised pendulum systems’, J. Mar. Sci. Technol., 2015, 23, (1), pp. 98108.
    45. 45)
      • 45. Zhu, B., Zhang, Q., Chang, C.: ‘Delay-dependent dissipative control for a class of non-linear system via Takagi–Sugeno fuzzy descriptor model with time delay’, IET Control Theory Applic., 2014, 8, (7), pp. 451461.
    46. 46)
      • 46. Zhao, Y., Gao, H., Lam, J., et al: ‘Stability and stabilization of delayed T–S fuzzy systems: A delay partitioning approach’, IEEE Trans. Fuzzy Syst., 2009, 17, (4), pp. 750762.
    47. 47)
      • 47. Su, X., Shi, P., Wu, L., et al: ‘A novel approach to filter design for T–S fuzzy discrete-time systems with time-varying delay’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 11141129.
    48. 48)
      • 48. Yang, F., Zhang, H., Hui, G., et al: ‘Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays’, Fuzzy Sets Syst., 2012, 207, pp. 4563.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1409
Loading

Related content

content/journals/10.1049/iet-cta.2016.1409
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address