Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free LMI-based criteria for robust finite-time stabilisation of switched systems with interval time-varying delay

This study investigates the problem of finite-time stabilisation for a class of switched linear systems with interval time-varying delay and parametric uncertainties. First, sufficient conditions for the finite-time stability of unforced switched systems are presented based on the average dwell time method and on the appropriate multiple Lyapunov-like functions that contain information regarding the lower and upper bounds of delay. A state feedback controller is then proposed for uncertain switched systems, with interval time-varying delay, which guarantees finite-time stabilisation of closed-loop systems. These conditions are formulated using a set of linear matrix inequalities and are dependent on the size of the time delay. Moreover, the criteria obtained are less conservative than some existing results because of the assumption of the upper bound of the derivative of the Lyapunov-like functions, without the neglect of any useful terms. Finally, two examples are provided to demonstrate the effectiveness of the proposed method. The first is a numerical example, and the second is a practical example involving river pollution control.

References

    1. 1)
      • 17. Lin, X., Du, H., Li, S.: ‘Finite-time boundedness and L2-gain analysis for switched delay systems with norm bounded disturbance’, Appl. Math. Comput., 2011, 217, (12), pp. 59825993.
    2. 2)
      • 32. Sun, X., Zhao, J., Hill, D.J.: ‘Stability and L2-gain analysis for switched delay systems: a delay-dependent method’, Automatica, 2006, 42, (10), pp. 17691774.
    3. 3)
      • 9. Wang, Q., Sun, H., Zong, G.: ‘Stability analysis of switched delay systems with all subsystems unstable’, Int. J. Control Autom. Syst., 2016, 14, (5), pp. 12621269.
    4. 4)
      • 27. Xiang, M., Xiang, Z.: ‘Finite time L1 control for positive switched linear systems with time-varying delay’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (11), pp. 31583166.
    5. 5)
      • 33. Wang, Y., Xie, L., Souza, C.E.: ‘Robust control of a class of uncertain nonlinear systems’, Syst. Control Lett., 1992, 19, (2), pp. 139149.
    6. 6)
      • 16. He, S., Liu, F.: ‘Finite-time boundedness of uncertain time-delayed neural network with Markovian jumping parameters’, Neurocomputing, 2013, 103, pp. 8792.
    7. 7)
      • 11. Xiang, M., Xiang, Z.: ‘Exponential stability of discrete-time switched linear positive systems with time-delay’, Appl. Math. Comput., 2014, 230, pp. 193199.
    8. 8)
      • 3. Siqueria, A.A.G., Terra, M.H.: ‘A fault-tolerant manipulator robot based on H2, H, and mixed H2/H Markovian controls’, IEEE/ASME Trans. Mechatronics, 2009, 14, (2), pp. 257263.
    9. 9)
      • 18. Zong, G., Wang, R., Zheng, W.X., et al: ‘Finite-time stabilization for a class of switched time-delay systems under asynchronous switching’, Appl. Math. Comput., 2013, 219, (11), pp. 57575771.
    10. 10)
      • 26. Wang, X., Zong, G., Sun, H.: ‘Asynchronous finite time dynamic output feedback control for switched time delay systems with non-linear disturbances’, IET Control Theory Appl., 2016, 10, (10), pp. 11421150.
    11. 11)
      • 29. Boyd, S., Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, 1994).
    12. 12)
      • 6. Buisson, J., Richard, P.Y., Cormerais, H.: ‘On the stabilisation of switching electrical power converters’. Proc. Hybrid Systems: Compution Control, Zurich, Switzerland, March 2005, pp. 184197.
    13. 13)
      • 7. Liu, S., Xiang, Z., Chen, Q.: ‘stability and stabilization of a class of switched nonlinear systems with time-varying delay’, Appl. Math. Comput., 2012, 218, (23), pp. 1153411546.
    14. 14)
      • 1. Cao, J.: ‘Improved delay-dependent exponential stability criteria for time-delay system’, J. Franklin Inst., 2013, 350, (4), pp. 790801.
    15. 15)
      • 34. Mahmoud, M.S.: ‘Resilient control of uncertain dynamical systems’ (Springer, Berlin, 2004).
    16. 16)
      • 19. Zong, G., Wang, R., Zheng, W., et al: ‘Finite time H control for discrete-time switched nonlinear systems with time delay’, Int. J. Robust Nonlinear Control, 2015, 25, (6), pp. 914936.
    17. 17)
      • 2. Lee, T.C., Jiang, Z.P.: ‘Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots’, IEEE Trans. Autom. Control, 2008, 53, (5), pp. 12351252.
    18. 18)
      • 23. Lin, X., Du, H., Li, S., et al: ‘Finite-time stability and finite-time weighted L2-gain analysis for switched systems with time-varying delay’, IET Control Theory Appl., 2013, 7, (7), pp. 10581069.
    19. 19)
      • 5. Mahmoud, M.S.: ‘Switched time-delay systems: stability and control’ (Springer-Verlag, Boston, 2010).
    20. 20)
      • 10. Tian, Y., Cai, Y., Sun, Y.: ‘Asymptotic behavior of switched delay systems with nonlinear disturbance’, Appl. Math. Comput., 2015, 268, pp. 522533.
    21. 21)
      • 15. Amato, F., Ariola, M., Dorato, P.: ‘Finite-time control of linear systems subject to parametric uncertainties and disturbances’, Automatica, 2001, 37, (9), pp. 14591463.
    22. 22)
      • 20. Lin, X., Li, X., Li, S., et al: ‘Finite-time boundedness for switched systems with sector bounded nonlinearity and constant time delay’, Appl. Math. Comput., 2016, 274, pp. 2540.
    23. 23)
      • 13. Niamsup, P., Rajchakit, M., Rajchakit, G.: ‘Guaranteed cost control for switched recurrent neural networks with interval time-varying delay’, J. Inequalities Appl., 2013, 1, pp. 112.
    24. 24)
      • 22. Xiang, Z., Sun, Y.N., Mahmoud, M.S.: ‘Robust finite-time H control for a class of uncertain switched neutral systems’, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, (4), pp. 17661778.
    25. 25)
      • 14. Rajchakit, M., Niamsup, P., Rajchakit, G.: ‘A switching rule for exponential stability of switched recurrent neural networks with interval time-varying delay’, Adv. Differ. Equ., 2013, 1, pp. 110.
    26. 26)
      • 25. Qin, C., Xiang, Z., Karimi, H.R.: ‘Finite time H control for switched systems with time-varying delay using delta operator approach’, Int. J. Control Autom. Syst., 2014, 12, (6), pp. 11501159.
    27. 27)
      • 31. Hespanha, J.P., Morse, A.S.: ‘Stability of switched systems with average dwell time’. Proc. IEEE Conf. Decision and Control, 1999, pp. 26552660.
    28. 28)
      • 28. Liu, H., Shen, Y.: ‘H finite-time control for switched linear systems with time-varying delay’, Intell. Control Autom., 2011, 2, (3), pp. 203213.
    29. 29)
      • 8. Rajchakit, G., Rojsiraphisal, T., Rajchakit, M.: ‘Robust stability and stabilization of uncertain switched discrete-time-systems’, Adv. Differ. Equ., 2012, 1, pp. 115.
    30. 30)
      • 24. Wang, S., Shi, T., Zhang, L., et al: ‘Extended finite time H control for uncertain switched linear neutral systems with time-varying delays’, Neurocomputing, 2015, 152, pp. 377378.
    31. 31)
      • 30. Balasubramaniam, P., Krishnasamy, R.: ‘Robust exponential stabilization results for impulsive neutral time-delay systems with sector-bounded nonlinearity’, Circuits Syst. Signal Process., 2014, 33, pp. 27412759.
    32. 32)
      • 21. Dong, Y., Yang, F.: ‘Finite-time stability and boundedness of switched nonlinear time-delay systems under state-dependent switching’, Complexity, 2015, 21, (2), pp. 267275.
    33. 33)
      • 4. Xie, D., Wu, Y.: ‘Stabilisation of time-delay switched systems with constrained switching signals and its applications in networked control systems’, IET Control Theory Appl., 2010, 4, (10), pp. 21202128.
    34. 34)
      • 12. Phat, V.N., Ratchagit, K.: ‘Stability and stabilization of switched linear discrete-time systems with interval time-varying delay’, Nonlinear Anal., Hybrid Syst., 2011, 5, (4), pp. 605612.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1390
Loading

Related content

content/journals/10.1049/iet-cta.2016.1390
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address