Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Square-root Kalman-like filters for estimation of stiff continuous-time stochastic systems with ill-conditioned measurements

This study addresses the performance of the extended and extended-cubature Kalman filters for state estimation of ill-conditioned stiff continuous-discrete stochastic systems. Stiff models arise naturally in practise as, for instance, the Van der Pol oscillator in electrical engineering and the Oregonator reaction in chemistry. Their accurate state estimation is a challenging task, which is made even more difficult by including ill-conditioned measurements, here. The authors' goal is to study accuracy of these methods when the Van der Pol oscillator and the Oregonator reaction become increasingly ill-conditioned. Thus, the authors determine efficient tools for estimation of stiff stochastic systems in the presence of round-off and other disturbances. They examine both conventional filters and their square-root forms. The square-root methods are obtained in two ways, namely, by solving the square-root moment differential equations and by square-rooting the filter itself. They prove that only the square-root filters grounded in the second approach (with use of stable orthogonal decompositions) are numerically stable and provide the highest state estimation accuracy in the ill-conditioned stiff stochastic examples under consideration.

References

    1. 1)
      • 21. Potter, J.E., Stern, R.G.: ‘Statistical filtering of space navigation measurements’. Proc. AIAA Guidance Control Conf., Cambridge, MA, USA, August 1963.
    2. 2)
      • 2. Aström, K.J.: ‘Introduction to stochastic control theory’ (Academic Press, New York, 1970).
    3. 3)
      • 10. Romanenko, A., Castro, J.A.A.M.: ‘The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study’, Comput. Chem. Eng., 2004, 28, (3), pp. 347355.
    4. 4)
      • 25. Kaminski, P.G., Bryson, A.E., Schmidt, S.F.: ‘Discrete square-root filtering: a survey of current techniques’, IEEE Trans. Autom. Control, 1971, AC-16, pp. 727735.
    5. 5)
      • 6. Grewal, M.S., Weill, L.R., Andrews, A.P.: ‘Global positioning systems, international navigation and integration’ (Wiley, New York, 2001).
    6. 6)
      • 29. Verhaegen, M.H.: ‘Round-off error propagation in four generally-applicable, recursive, least-squares estimation schemes’, Automatica, 1989, 25, (3), pp. 437444.
    7. 7)
      • 4. Crassidis, J.L., Junkins, J.L.: ‘Optimal estimation of dynamic systems’ (CRC Press LLC, New York, 2004).
    8. 8)
      • 27. Park, P., Kailath, T.: ‘New square-root algorithms for Kalman filtering’, IEEE Trans Autom. Control, 1995, 40, (5), pp. 895899.
    9. 9)
      • 24. Dyer, P., McReynolds, S.: ‘Extensions of square root filtering to include process noise’, J Opt. Theory Appl., 1969, 3, (6), pp. 444459.
    10. 10)
      • 5. Grewal, M.S., Andrews, A.P.: ‘Kalman filtering: theory and practice’ (Prentice-Hall, New Jersey, 2001).
    11. 11)
      • 26. Bierman, G.J., Thornton, C.L.: ‘A numerical comparison of discrete Kalman filtering algorithms: orbit determination case study’, Automatica, 1977, 13, pp. 2335.
    12. 12)
      • 20. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, New Jersey, 2000).
    13. 13)
      • 34. Kulikov, G.Yu.: ‘Cheap global error estimation in some Runge–Kutta pairs’, IMA J. Numer. Anal., 2013, 33, (1), pp. 136163.
    14. 14)
      • 33. Lewis, F.L.: ‘Optimal estimation: with an introduction to stochastic control theory’ (John Wiley & Sons, New York, 1986).
    15. 15)
      • 7. Jazwinski, A.H.: ‘Stochastic processes and filtering theory’ (Academic Press, New York, 1970).
    16. 16)
      • 16. Simon, D.: ‘Optimal state estimation: Kalman, H infinity and nonlinear approaches’ (Wiley, Hoboken, 2006).
    17. 17)
      • 23. Andrews, A.: ‘A square root formulation of the Kalman covariance equations’, AIAA J., 1968, 6, (6), pp. 11651166.
    18. 18)
      • 31. Frogerais, P., Bellanger, J.J., Senhadji, L.: ‘Various ways to compute the continuous-discrete extended Kalman filter’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 10001004.
    19. 19)
      • 3. Bar-Shalom, Y., Li Rong, X., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation’ (Wiley, New York, 2001).
    20. 20)
      • 8. Øksendal, B.: ‘Stochastic differential equations: an introduction with applications’ (Springer, New York, 2003).
    21. 21)
      • 40. Hu, J., Wang, Z., Shen, B., et al: ‘Quantized recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements’, Int. J. Control, 2013, 86, (4), pp. 650663.
    22. 22)
      • 13. Wilson, D.I., Agarwal, M., Rippin, D.W.T.: ‘Experiences implementing the extended Kalman filter on an industrial batch reactor’, Comput. Chem. Eng., 1998, 22, pp. 16531672.
    23. 23)
      • 12. Soroush, M.: ‘State and parameter estimation and their applications in process control’, Comput. Chem. Eng., 1998, 23, pp. 229245.
    24. 24)
      • 22. Bellantoni, J.F., Dodge, K.W.: ‘A square root formulation of the Kalman–Schmidt filter’, AIAA J., 1967, 5, (7), pp. 13091314.
    25. 25)
      • 19. Bierman, G.J., Belzer, M.R., Vandergraft, J.S., et al: ‘Maximum likelihood estimation using square root information filters’, IEEE Trans. Autom. Control, 1990, 35, pp. 12931298.
    26. 26)
      • 18. Bierman, G.J.: ‘Factorization methods for discrete sequential estimation’ (Academic Press, New York, 1977).
    27. 27)
      • 14. Särkkä, S.: ‘On unscented Kalman filter for state estimation of continuous-time nonlinear systems’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 16311641.
    28. 28)
      • 36. Kulikova, M.V., Pacheco, A.: ‘Kalman filter sensitivity evaluation with orthogonal and J-orthogonal transformations’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 17981804.
    29. 29)
      • 28. Van Dooren, M., Verhaegen, P.: ‘Numerical aspects of different Kalman filter implementations’, IEEE Trans Autom. Control, 1986, AC-31, (10), pp. 907917.
    30. 30)
      • 39. Kulikov, G.Yu., Kulikova, M.V.: ‘Accurate continuous-discrete extended Kalman filtering for stiff continuous-time stochastic models in chemical engineering’. Proc. 2016 European Control Conf., Aalborg, Denmark, 29 June–1 July 2016, pp. 17281733.
    31. 31)
      • 35. Kulikova, M.V.: ‘Likelihood gradient evaluation using square-root covariance filters’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 646651.
    32. 32)
      • 37. Tsyganova, J.V., Kulikova, M.V.: ‘State sensitivity evaluation within UD based array covariance filter’, IEEE Trans. Autom. Control, 2013, 58, (11), pp. 29442950.
    33. 33)
      • 41. Hu, J., Wang, Z., Liu, S., et al: ‘A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements’, Automatica, 2016, 64, pp. 155162.
    34. 34)
      • 15. Dochain, D.: ‘State and parameter estimation in chemical and biochemical processes: a tutorial’, J. Process. Control, 2003, 13, pp. 801818.
    35. 35)
      • 9. Rawlings, J.B., Mayne, D.Q.: ‘Model predictive control: theory and design’ (Bob Hill Publishing, LLC, Madison, 2013).
    36. 36)
      • 32. Kulikov, G.Yu., Kulikova, M.V.: ‘Accurate numerical implementation of the continuous-discrete extended Kalman filter’, IEEE Trans. Autom. Control, 2014, 59, (1), pp. 273279.
    37. 37)
      • 1. Aggoun, L., Elliot, R.J.: ‘Measure theory and filtering’ (Cambridge University Press, Cambridge, 2005).
    38. 38)
      • 17. Kulikov, G.Yu., Kulikova, M.V.: ‘Estimating the state in stiff continuous-time stochastic systems within extended Kalman filtering’, SIAM J. Sci. Comput., 2016, 38, (6), pp. A3565A3588.
    39. 39)
      • 11. Romanenko, A., Santos, L.O., Afonso, P.A.F.N.A.: ‘Unscented Kalman filtering of a simulated pH system’, Ind. Eng. Chem. Res., 2004, 43, pp. 75317538.
    40. 40)
      • 30. Kulikov, G.Yu., Kulikova, M.V.: ‘Accurate cubature and extended Kalman filtering methods for estimating continuous-time nonlinear stochastic systems with discrete measurements’, Appl. Numer. Math., 2017, 111, pp. 260275.
    41. 41)
      • 38. Havlík, J., Straka, O.: ‘A new practically oriented generation of nonlinear filtering toolbox’. Proc. 17th IFAC Symp. on System Identification, Beijing, China, October 2015, pp. 10701075.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1381
Loading

Related content

content/journals/10.1049/iet-cta.2016.1381
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address