access icon free Decentralised stabilisation of positive fractional-order interconnected systems

This study addresses the stabilisation problem via decentralised controllers for continuous-time positive fractional-order (FO) interconnected systems. By virtue of the positivity, a necessary and sufficient condition is first derived for asymptotic stability of the interconnected closed-loop system. Then, necessary and sufficient conditions for designing a decentralised state-feedback controller are formulated in the form of a linear programming problem which can be effectively solved by using various convex optimisation algorithms. The effectiveness of the obtained theoretical results is demonstrated by a numerical example in positive FO circuits.

Inspec keywords: interconnected systems; state feedback; decentralised control; closed loop systems; linear programming; asymptotic stability; continuous time systems; convex programming

Other keywords: asymptotic stability; closed-loop system; linear programming problem; state-feedback controller; convex optimisation algorithms; continuous-time FO systems; decentralised controllers; positive fractional-order interconnected systems; decentralised stabilisation

Subjects: Stability in control theory; Multivariable control systems; Optimisation techniques

References

    1. 1)
      • 22. Mesquine, F., Hmamed, A., Benhayoun, M., et al: ‘Robust stabilization of constrained uncertain continuous-time fractional positive systems’, J. Frankl. Inst., 2015, 352, (1), pp. 259270.
    2. 2)
      • 15. Lin, J.: ‘Robust resilient controllers synthesis for uncertain fractional-order large-scale interconnected system’, J. Frankl. Inst., 2014, 351, (3), pp. 16301643.
    3. 3)
      • 1. Jacquez, J.: ‘Compartmental analysis in biology and medicine’ (University of Michigan Press, Ann Arbor, MI, 1985).
    4. 4)
      • 25. Li, C.P., Zhang, F.R.: ‘A survey on the stability of fractional differential equations’, Eur. Phys. J. Spec. Top., 2011, 193, (1), pp. 2747.
    5. 5)
      • 4. Shorten, R., Wirth, F., Leith, D.: ‘A positive systems model of tcp-like congestion control: asymptotic results’, IEEE/ACM Trans. Netw., 2006, 14, (3), pp. 616629.
    6. 6)
      • 5. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, New York, 1999).
    7. 7)
      • 11. Kacrozek, T., Rogowski, K.: ‘Fractional linear systems and electrical circuits’ (Springer, Cham, 2015).
    8. 8)
      • 20. Kaczorek, T.: ‘Necessary and sufficient stability conditions of fractional positive continuous-time linear systems’, Acta Mech. Autom., 2011, 5, (2), pp. 5254.
    9. 9)
      • 14. Li, J., Lu, J.G., Chen, Y.Q.: ‘Robust decentralized control of perturbed fractional-order linear interconnected systems’, Comput. Math. Appl., 2013, 66, (5), pp. 844859.
    10. 10)
      • 9. Ionescu, C.M., Machado, J.A.T., Keyser, R.D.: ‘Modeling of the lung impedance using a fractional-order ladder network with constant phase elements’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (1), pp. 8389.
    11. 11)
      • 2. Haddad, W., Chelloboina, V., Hui, Q.: ‘Nonnegative and compartmental dynamical systems’ (Princeton University Press, Princeton, NJ, 2010).
    12. 12)
      • 10. Ghasemi, S., Tabesh, A., Marnani, J.A.: ‘Application of fractional calculus theory to robust controller design for wind turbine generators’, IEEE Trans. Energy Conver., 2014, 29, (3), pp. 780787.
    13. 13)
      • 21. Benzaouia, A., Hmamed, A., Mesquine, F., et al: ‘Stabilization of continuous-time fractional positive systems by using a Lyapunov function’, IEEE Trans. Autom. Control, 2014, 59, (8), pp. 22032208.
    14. 14)
      • 17. Lu, J.G., Zhao, Y.A.: ‘Decentralised robust H control of fractional-order interconnected systems with uncertainties’, Int. J. Control, 2017, 90, (6), pp. 12211229.
    15. 15)
      • 19. Kaczorek, T.: ‘Positive linear systems consisting of n subsystems with different fractional orders’, IEEE Trans. Circuits Syst., 2011, 58, (6), pp. 12031210.
    16. 16)
      • 6. Lundstrom, B.N., Higgs, H.M., Spain, W.J., et al: ‘Fractional differentiation by neocortical pyramidal neurons’, Nat. Neurosci, 2008, 11, (11), pp. 13351342.
    17. 17)
      • 13. Caponetto, R., Dongola, G., Fortuna, L., et al: ‘Fractional order systems: modeling and control applications’ (World Scientific, 2010).
    18. 18)
      • 18. Kaczorek, T.: ‘Fractional positive continuous-time linear systems and their reachability’, Int. J. Appl. Math. Comput. Sci., 2008, 18, (2), pp. 223228.
    19. 19)
      • 24. Miller, K.S., Samko, S.: ‘A note on the complete monotonicity of the generalized Mittag–Leffler function’, Real Anal. Exchange, 1999, 23, (2), pp. 753756.
    20. 20)
      • 12. Domek, S., Dworak, P.: ‘Theoretical developments and applications of non-integer order systems’ (Springer, Cham, 2016).
    21. 21)
      • 3. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (John Wiley & Sons, New York, 2000).
    22. 22)
      • 8. Kaczorek, T.: ‘Selected problems of fractional systems theory’ (Springer-Verlag, Berlin, 2011).
    23. 23)
      • 7. Elwakil, A.S.: ‘Fractional-order circuits and systems: an emerging interdisciplinary research area’, IEEE Circuits Syst. Mag., 2010, 10, (4), pp. 4050.
    24. 24)
      • 16. Shen, J., Lam, J.: ‘State feedback H control of commensurate fractional-order systems’, Int. J. Syst. Sci., 2014, 45, (3), pp. 363372.
    25. 25)
      • 23. Shen, J., Lam, J.: ‘Stability and performance analysis for positive fractional-order systems with time-varying delays’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 26762681.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1341
Loading

Related content

content/journals/10.1049/iet-cta.2016.1341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading