http://iet.metastore.ingenta.com
1887

Decentralised stabilisation of positive fractional-order interconnected systems

Decentralised stabilisation of positive fractional-order interconnected systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the stabilisation problem via decentralised controllers for continuous-time positive fractional-order (FO) interconnected systems. By virtue of the positivity, a necessary and sufficient condition is first derived for asymptotic stability of the interconnected closed-loop system. Then, necessary and sufficient conditions for designing a decentralised state-feedback controller are formulated in the form of a linear programming problem which can be effectively solved by using various convex optimisation algorithms. The effectiveness of the obtained theoretical results is demonstrated by a numerical example in positive FO circuits.

References

    1. 1)
      • 1. Jacquez, J.: ‘Compartmental analysis in biology and medicine’ (University of Michigan Press, Ann Arbor, MI, 1985).
    2. 2)
      • 2. Haddad, W., Chelloboina, V., Hui, Q.: ‘Nonnegative and compartmental dynamical systems’ (Princeton University Press, Princeton, NJ, 2010).
    3. 3)
      • 3. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (John Wiley & Sons, New York, 2000).
    4. 4)
      • 4. Shorten, R., Wirth, F., Leith, D.: ‘A positive systems model of tcp-like congestion control: asymptotic results’, IEEE/ACM Trans. Netw., 2006, 14, (3), pp. 616629.
    5. 5)
      • 5. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, New York, 1999).
    6. 6)
      • 6. Lundstrom, B.N., Higgs, H.M., Spain, W.J., et al: ‘Fractional differentiation by neocortical pyramidal neurons’, Nat. Neurosci, 2008, 11, (11), pp. 13351342.
    7. 7)
      • 7. Elwakil, A.S.: ‘Fractional-order circuits and systems: an emerging interdisciplinary research area’, IEEE Circuits Syst. Mag., 2010, 10, (4), pp. 4050.
    8. 8)
      • 8. Kaczorek, T.: ‘Selected problems of fractional systems theory’ (Springer-Verlag, Berlin, 2011).
    9. 9)
      • 9. Ionescu, C.M., Machado, J.A.T., Keyser, R.D.: ‘Modeling of the lung impedance using a fractional-order ladder network with constant phase elements’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (1), pp. 8389.
    10. 10)
      • 10. Ghasemi, S., Tabesh, A., Marnani, J.A.: ‘Application of fractional calculus theory to robust controller design for wind turbine generators’, IEEE Trans. Energy Conver., 2014, 29, (3), pp. 780787.
    11. 11)
      • 11. Kacrozek, T., Rogowski, K.: ‘Fractional linear systems and electrical circuits’ (Springer, Cham, 2015).
    12. 12)
      • 12. Domek, S., Dworak, P.: ‘Theoretical developments and applications of non-integer order systems’ (Springer, Cham, 2016).
    13. 13)
      • 13. Caponetto, R., Dongola, G., Fortuna, L., et al: ‘Fractional order systems: modeling and control applications’ (World Scientific, 2010).
    14. 14)
      • 14. Li, J., Lu, J.G., Chen, Y.Q.: ‘Robust decentralized control of perturbed fractional-order linear interconnected systems’, Comput. Math. Appl., 2013, 66, (5), pp. 844859.
    15. 15)
      • 15. Lin, J.: ‘Robust resilient controllers synthesis for uncertain fractional-order large-scale interconnected system’, J. Frankl. Inst., 2014, 351, (3), pp. 16301643.
    16. 16)
      • 16. Shen, J., Lam, J.: ‘State feedback H control of commensurate fractional-order systems’, Int. J. Syst. Sci., 2014, 45, (3), pp. 363372.
    17. 17)
      • 17. Lu, J.G., Zhao, Y.A.: ‘Decentralised robust H control of fractional-order interconnected systems with uncertainties’, Int. J. Control, 2017, 90, (6), pp. 12211229.
    18. 18)
      • 18. Kaczorek, T.: ‘Fractional positive continuous-time linear systems and their reachability’, Int. J. Appl. Math. Comput. Sci., 2008, 18, (2), pp. 223228.
    19. 19)
      • 19. Kaczorek, T.: ‘Positive linear systems consisting of n subsystems with different fractional orders’, IEEE Trans. Circuits Syst., 2011, 58, (6), pp. 12031210.
    20. 20)
      • 20. Kaczorek, T.: ‘Necessary and sufficient stability conditions of fractional positive continuous-time linear systems’, Acta Mech. Autom., 2011, 5, (2), pp. 5254.
    21. 21)
      • 21. Benzaouia, A., Hmamed, A., Mesquine, F., et al: ‘Stabilization of continuous-time fractional positive systems by using a Lyapunov function’, IEEE Trans. Autom. Control, 2014, 59, (8), pp. 22032208.
    22. 22)
      • 22. Mesquine, F., Hmamed, A., Benhayoun, M., et al: ‘Robust stabilization of constrained uncertain continuous-time fractional positive systems’, J. Frankl. Inst., 2015, 352, (1), pp. 259270.
    23. 23)
      • 23. Shen, J., Lam, J.: ‘Stability and performance analysis for positive fractional-order systems with time-varying delays’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 26762681.
    24. 24)
      • 24. Miller, K.S., Samko, S.: ‘A note on the complete monotonicity of the generalized Mittag–Leffler function’, Real Anal. Exchange, 1999, 23, (2), pp. 753756.
    25. 25)
      • 25. Li, C.P., Zhang, F.R.: ‘A survey on the stability of fractional differential equations’, Eur. Phys. J. Spec. Top., 2011, 193, (1), pp. 2747.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1341
Loading

Related content

content/journals/10.1049/iet-cta.2016.1341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address