Optimal control for networked control systems with disturbances: a delta operator approach

Optimal control for networked control systems with disturbances: a delta operator approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the optimal control problem for a class of delta-domain networked control systems (NCSs) subjected to both matched and unmatched disturbances. In the presence of the disturbances, the so-called -optimum is proposed to quantify the control performance. The purpose of the addressed problem is to design the optimal control strategy such that the cost function is minimised over the finite-/infinite-horizon under the network-induced constraints. In virtue of the dynamic programming method, sufficient conditions are established to guarantee the existence of the desired control strategies, and the controller parameters are designed. For the obtained optimal control strategy, an upper bound for the -optimum is provided explicitly, and convex optimisation algorithms are given to compute such upper bound. Both simulation and experimental results are provided to illustrate the usefulness and applicability of the proposed methods.


    1. 1)
      • 1. Li, H., Yang, H., Sun, F., et al: ‘Sliding-mode predictive control of networked control systems under a multiple-packet transmission policy’, IEEE Trans. Ind. Electron., 2014, 61, pp. 62346243.
    2. 2)
      • 2. Niu, Y., Ho, D.W.C.: ‘Control strategy with adaptive quantizer's parameters under digital communication channels’, Automatica, 2014, 50, pp. 26652671.
    3. 3)
      • 3. Wu, L., Lam, J., Yao, X., et al: ‘Robust guaranteed cost control of discrete-time networked control systems’, Optim. Control Appl. Meth., 2011, 32, pp. 95112.
    4. 4)
      • 4. Ding, D., Wang, Z., Wei, G., et al: ‘Event-based security control for discrete-time stochastic systems’, IET Control Theory Appl., 2016, 10, pp. 18081815.
    5. 5)
      • 5. Liu, D., Liu, Y., Alsaadi, F.E.: ‘A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement’, Int. J. Gen. Syst., 2016, 45, pp. 517531.
    6. 6)
      • 6. Liu, S., Wei, G., Song, Y., et al: ‘Extended Kalman filtering for stochastic nonlinear systems with randomly occurring cyber attacks’, Neurocomputing, 2016, 207, pp. 708716.
    7. 7)
      • 7. Yuan, Y., Yuan, H., Guo, L., et al: ‘Resilient control of networked control system under DoS attacks: A unified game approach’, IEEE Trans. Ind. Inf., 2016, 12, pp. 17861794.
    8. 8)
      • 8. Liu, H., Guo, D., Sun, F.: ‘Object recognition using tactile measurements: Kernel sparse coding methods’, IEEE Trans. Instrum. Meas., 2016, 65, pp. 656665.
    9. 9)
      • 9. Liu, H., Liu, Y., Sun, F.: ‘Robust exemplar extraction using structured sparse coding’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, pp. 18161821.
    10. 10)
      • 10. Liu, Y., Liu, W., Obaid, M.A., et al: ‘Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays’, Neurocomputing, 2016, 177, pp. 409415.
    11. 11)
      • 11. Liu, S., Wei, G., Song, Y., et al: ‘Error-constrained reliable tracking control for discrete time-varying systems subject to quantization effects’, Neurocomputing, 2016, 174, pp. 897905.
    12. 12)
      • 12. Li, W., Wei, G., Han, F., et al: ‘Weighted average consensus-based unscented Kalman filtering’, IEEE Trans. Cybern., 2016, 46, pp. 558567.
    13. 13)
      • 13. Yuan, Y., Yuan, H., Guo, L., et al: ‘Multi-tasking optimal control of networked control systems: a delta operator approach’, Int. J. Robust Nonlinear Control, 2016, doi: 10.1002/rnc.3714.
    14. 14)
      • 14. Zhang, W., Wang, Z., Liu, Y., et al: ‘Event-based state estimation for a class of complex networks with time-varying delays: A comparison principle approach’, Phys. Lett. A, 2017, 381, pp. 1018.
    15. 15)
      • 15. Yang, H., Xia, Y., Shi, P., et al: ‘Analysis and synthesis of delta operator systems’ (Springer, New York, NY, USA, 2012).
    16. 16)
      • 16. Li, H., Li, Z., Yang, H., et al: ‘Stabilisation of networked delta operator systems with uncertainty’, IET Control Theory Appl., 2015, 8, pp. 22892296.
    17. 17)
      • 17. Yang, H., Xia, Y., Shi, P., et al: ‘Guaranteed cost control of networked control systems based on delta operator Kalman filter’, Int. J. Adapt. Control Signal Process., 2012, 27, pp. 701717.
    18. 18)
      • 18. Yang, H., Xia, Y., Shi, P., et al: ‘Stability of Markovian jump systems over networks via delta operator approach’, Circ. Syst. Signal Process., 2012, 31, pp. 107125.
    19. 19)
      • 19. Basar, T., Olsder, G.J.: ‘Dynamic noncooperative game theory’ (Academic Press, London, Britain, 1995).
    20. 20)
      • 20. Guo, L., Cao, S.: ‘Anti-disturbance control theory for systems with multiple disturbances: a survey’, ISA Trans., 2014, 53, pp. 846849.
    21. 21)
      • 21. Wei, Y., Zheng, W., Xu, S.: ‘Anti-disturbance control for nonlinear systems subject to input saturation via disturbance observer’, Syst. Control Lett., 2015, 85, pp. 6169.
    22. 22)
      • 22. Yi, Y., Zhang, T.: ‘Anti-disturbance tracking control for systems with nonlinear disturbances using T–S fuzzy modeling’, Neurocomputing, 2015, 171, pp. 10271037.
    23. 23)
      • 23. Xiao, N., Xie, L., Qiu, L.: ‘Feedback stabilization of discrete-time networked systems over fading channels’, IEEE Trans. Autom. Control, 2012, 57, pp. 21762189.
    24. 24)
      • 24. Zhang, J., Ma, L., Liu, Y.: ‘Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects’, Neurocomputing, 2016, 216, pp. 657665.
    25. 25)
      • 25. Zhao, L., Yang, Y., Xia, Y., et al: ‘Active disturbance rejection position control for a magnetic rodless pneumatic cylinder’, IEEE Trans. Ind. Electron., 2015, 62, pp. 58385846.
    26. 26)
      • 26. Li, Q., Shen, B., Liu, Y., et al: ‘Event-triggered H state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays’, Neurocomputing, 2016, 174, pp. 912920.
    27. 27)
      • 27. Yao, X., Guo, L.: ‘Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer’, Automatica, 2013, 49, pp. 25382545.
    28. 28)
      • 28. Shu, H., Zhang, S., Shen, B., et al: ‘Unknown input and state estimation for linear discrete-time systems with missing measurements and correlated noises’, Int. J. Gen. Syst., 2016, 45, pp. 648661.
    29. 29)
      • 29. Guo, L., Chen, W.: ‘Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach’, Int. J. Robust Nonlinear Control, 2005, 15, pp. 109125.
    30. 30)
      • 30. Wei, X., Chen, N., Deng, C., et al: ‘Composite stratified anti-disturbance control for a class of MIMO discrete-time system with nonlinearity’, Int. J. Robust Nonlinear Control, 2012, 22, pp. 453472.
    31. 31)
      • 31. Yang, J., Li, S., Sun, C., et al: ‘Nonlinear-disturbance-observer-based robust flight control for air breathing hypersonic vehicles’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, pp. 12631275.
    32. 32)
      • 32. Wang, D., Liu, D., Wei, Q., et al: ‘Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming’, Automatica, 2012, 48, pp. 18251832.
    33. 33)
      • 33. Tan, X., Jose, B.: ‘Adaptive noncooperative-person games with unknown general quadratic objectives’, IEEE Trans. Control Syst. Technol., 2009, 10, pp. 10331043.
    34. 34)
      • 34. Xu, H., Jagannathan, S., Lewis, F.: ‘Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses’, Automatica, 2012, 48, pp. 10171030.
    35. 35)
      • 35. Jackson, O., Tomas, R., Xu, T.: ‘Epsilon-equilibria of perturbed games’, Games Econ. Behav., 2012, 75, pp. 198216.
    36. 36)
      • 36. Jimenez, M., Basin, M., Rodriguez, V., et al: ‘Open-loop Nash equilibrium in polynomial differential games via state-dependent Riccati equation’, Automatica, 2015, 53, pp. 155163.
    37. 37)
      • 37. Chen, Z., Reg, K., Jiang, L.: ‘Jensen's inequality for g-expectation: Part I’, CR. Math., 2003, 337, pp. 725730.
    38. 38)
      • 38. Imer, C., Yuksel, S., Basar, T.: ‘Optimal control of LTI systems over communication networks’, Automatica, 2006, 42, pp. 14291439.
    39. 39)
      • 39. Middleton, R., Goodwin, G.C.: ‘Digital control and estimation: a unified approach’ (Englewood Cliffs, New Jersey, US, 1990).
    40. 40)
      • 40. Wen, C., Cai, Y., Liu, Y., et al: ‘A reduced-order approach to filtering for systems with linear equality constraints’, Neurocomputing, 2016, 193, pp. 219226.
    41. 41)
      • 41. Mi, Y., Fu, Y., Wang, C., et al: ‘Decentralized sliding mode load frequency control for multi area power systems’, IEEE Trans. Power Syst., 2013, 28, pp. 43014309.

Related content

This is a required field
Please enter a valid email address