http://iet.metastore.ingenta.com
1887

Memory scheduling robust filter-based fault detection for discrete-time polytopic uncertain systems over fading channels

Memory scheduling robust filter-based fault detection for discrete-time polytopic uncertain systems over fading channels

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel memory scheduling robust fault detection filter (FDF) is proposed for a class of discrete-time polytopic uncertain systems with fading channel communication networks. The main merit of this filter-based fault detection method is that it can significantly improve the robustness of FDF to attenuate influences from external disturbance, channel fading and model uncertainty on fault detection accuracy. Designing such FDF involves three main stages. First of all, a memory scheduling FDF structure is proposed based on the utilisation of weighted historical filter's states over interval instants, and a residual error system is formulated based on time partition and state augmented approaches. Then, the parameter-dependent Lyapunov method is further utilised to analyse the stochastic stability of the residual error system with the help of Finsler equivalent transformation. In the following, a two-stage optimisation algorithm combined with scalar parameters method is constructed to design memory scheduling FDF in a less conservative linear matrix inequality manner. Finally, a random numerical verification with 300 test systems and a case study of an industrial continuous-stirred tank reactor are exploited to show the effectiveness of obtained results.

References

    1. 1)
      • 1. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer, Berlin, 2008).
    2. 2)
      • 2. Li, H., Gao, Y., Shi, P., et al: ‘Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity’, IEEE Trans. Autom. Control, 2016, 61, (6), pp. 27452751.
    3. 3)
      • 3. Wu, L., Luo, W., Zeng, Y., et al: ‘Fault detection for underactuated manipulators modeled by Markovian jump systems’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 43874399.
    4. 4)
      • 4. Zhang, K., Jiang, B., Shi, P., et al: ‘Analysis and design of robust H fault extimation observer with finite-frequency specifications for discrete-time fuzzy systems’, IEEE Trans. Cybern., 2015, 45, (7), pp. 12251235.
    5. 5)
      • 5. Feng, J., Wang, S., Zhao, Q.: ‘Closed-loop design of fault detection for networked non-linear systems with mixed delays and packet losses’, IET Control Theory Appl., 2013, 7, (6), pp. 858868.
    6. 6)
      • 6. Zhong, M., Ding, S.X., Lam, J., et al: ‘An LMI approach to design robust fault detection filter for uncertain LTI systems’, Automatica, 2003, 39, (3), pp. 543550.
    7. 7)
      • 7. He, X., Wang, Z., Ji, Y., et al: ‘Fault detection for discrete-time systems in a networked environment’, Int. J. Syst. Sci., 2010, 41, (8), pp. 937945.
    8. 8)
      • 8. Niu, Y., Ho, D.W.C.: ‘Design of sliding mode control subject to packet losses’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 26232628.
    9. 9)
      • 9. Song, J., Niu, Y., Zou, Y.: ‘Robust finite-time bounded control for discrete-time stochastic systems with communication constraint’, IET Control Theory Appl., 2015, 9, (13), pp. 20152021.
    10. 10)
      • 10. Liu, J., Yue, D.: ‘Event-based fault detection for networked systems with communication delay and nonlinear perturbation’, J. Frankl. Inst., 2013, 350, (9), pp. 27912807.
    11. 11)
      • 11. Mao, Z., Jiang, B., Shi, P.: ‘Protocol and fault detection design for nonlinear networked control systems’, IEEE Trans. Circ. Syst. II Express Brief, 2009, 56, (3), pp. 255259.
    12. 12)
      • 12. Wang, Y., Ye, H., Ding, S.X., et al: ‘Residual generation and evaluation of networked control systems subject to random packet dropout’, Automatica, 2009, 45, (10), pp. 24272434.
    13. 13)
      • 13. Mostofi, Y., Murray, R.M.: ‘To drop or not to drop: design principles for Kalman filtering over wireless fading channels’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 376381.
    14. 14)
      • 14. Ding, D., Wang, Z., Shen, B., et al: ‘H state estimation with fading measurements, randomly varying nonlinearities and probabilistic distributed delays’, Int. J. Robust Nonlinear Control, 2015, 25, (13), pp. 21802195.
    15. 15)
      • 15. Zhang, S., Wang, Z., Ding, D., et al: ‘Fuzzy filtering with randomly occurring parameter uncertainties, interval delays, and channel fadings’, IEEE Trans. Cybern., 2014, 44, (3), pp. 406417.
    16. 16)
      • 16. Li, Z., Shu, H., Kan, X.: ‘H fault detection with randomly occurring nonlinearities and channel fadings’, Int. J. Syst. Sci., 2014, 45, (7), pp. 14161426.
    17. 17)
      • 17. Dong, H., Wang, Z., Ding, S.X., et al: ‘On H-infinity estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels’, IEEE Trans. Autom. Control, 2016, 61, (2), pp. 479484.
    18. 18)
      • 18. Elia, N.: ‘Remote stabilization over fading channels’, Syst. Control Lett., 2005, 54, (3), pp. 237249.
    19. 19)
      • 19. Song, J., Niu, Y., Wang, S.: ‘Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements’, J. Frankl. Inst., 2017, 354, (9), pp. 37063723.
    20. 20)
      • 20. Borges, R., Oliveira, R., Abdallah, C., et al: ‘Robust H networked control for systems with uncertain sampling rates’, IET Control Theory Appl., 2010, 4, (1), pp. 5060.
    21. 21)
      • 21. Olalla, C., Leyva, R., El Aroudi, A., et al: ‘Robust LQR control for PWM converters: an LMI approach’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 25482558.
    22. 22)
      • 22. Duan, Z., Zhang, J., Zhang, C., et al: ‘Robust H2 and H filtering for uncertain linear systems’, Automatica, 2006, 42, (11), pp. 19191926.
    23. 23)
      • 23. Zhang, L., Boukas, E.K., Lam, J.: ‘Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 24582464.
    24. 24)
      • 24. Casavola, A., Famularo, D., Franze, G.: ‘A robust deconvolution scheme for fault detection and isolation of uncertain linear systems: an LMI approach’, Automatica, 2005, 41, (8), pp. 14631472.
    25. 25)
      • 25. Kim, Y.M., Watkins, J.M.: ‘A new approach for robust and reduced order fault detection filter design’. American Control Conf., New York, USA, 2007, pp. 11371142.
    26. 26)
      • 26. Gao, H., Chen, T., Wang, L.: ‘Robust fault detection with missing measurements’, Int. J. Control, 2008, 81, (5), pp. 804819.
    27. 27)
      • 27. Jia, T., Niu, Y., Zou, Y.: ‘Sliding mode control for stochastic systems subject to packet losses’, Inf. Sci., 2012, 217, pp. 117126.
    28. 28)
      • 28. Xie, X., Yue, D., Zhang, H., et al: ‘Control synthesis of discrete-time T–S fuzzy systems: reducing the conservatism whilst alleviating the computational burden’, IEEE Trans. Cyber., 2016, doi: 10.1109/TCYB.2016.2582747.
    29. 29)
      • 29. Zhao, Y., Lam, J., Gao, H.: ‘Fault detection for fuzzy systems with intermittent measurements’, IEEE Trans. Fuzzy Syst., 2009, 17, (2), pp. 398410.
    30. 30)
      • 30. Long, Y., Yang, G.H.: ‘Fault detection filter design for stochastic networked control systems’, Int. J. Robust Nonlinear Control, 2015, 25, (3), pp. 443460.
    31. 31)
      • 31. You, J., Yin, S., Gao, H.: ‘Fault detection for discrete systems with network-induced nonlinearities’, IEEE Trans. Ind. Inform., 2014, 10, (4), pp. 22162223.
    32. 32)
      • 32. Li, Z., Wang, Z., Ding, D., et al: ‘H fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: the finite-horizon case’, Int. J. Robust Nonlinear Control, 2015, 25, (15), pp. 26712686.
    33. 33)
      • 33. Su, X., Shi, P., Wu, L., et al: ‘Fault detection filtering for nonlinear switched stochastic systems’, IEEE Trans. Autom. Control, 2015, 61, (5), pp. 13101315.
    34. 34)
      • 34. Ding, S.X., Ding, E.L., Jeinsch, T.: ‘A new optimization approach to the design of fault detection filters’. Proc. SAFEPROCESS, Budapest, Hungary, 2000, pp. 250255.
    35. 35)
      • 35. Frisk, E., Nielsen, L.: ‘Robust residual generation for diagnosis including a reference model for residual behavior’, Automatica, 2006, 42, (3), pp. 437445.
    36. 36)
      • 36. Zhang, L., Shi, Y., Chen, T., et al: ‘A new method for stabilization of networked control systems with random delays’, IEEE Trans. Autom. Control, 2005, 50, (8), pp. 11771181.
    37. 37)
      • 37. Zhang, H., Wang, J.: ‘State estimation of discrete-time Takagi–Sugeno fuzzy systems in a network environment’, IEEE Trans. Cybern., 2015, 45, (8), pp. 15251536.
    38. 38)
      • 38. de Oliveira, M.C.: ‘Investigating duality on stability conditions’, Syst. Control Lett., 2004, 52, (1), pp. 16.
    39. 39)
      • 39. Han, K., Feng, J.: ‘Improved scalar parameters approach to design robust H filter for uncertain discrete-time linear systems’, Signal Process., 2015, 113, pp. 113123.
    40. 40)
      • 40. Sturm, J.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cons’, Optim. Method Softw., 1999, 11, (1–4), pp. 625653.
    41. 41)
      • 41. Lofberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. IEEE Int. Symp. Comput. Aided Control Syst. Design, Taiwan, 2004, pp. 284289.
    42. 42)
      • 42. Lee, D., Joo, Y., Tak, M.: ‘Periodically time-varying H memory filter design for discrete-time LTI systems with polytopic uncertainty’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 13801385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1248
Loading

Related content

content/journals/10.1049/iet-cta.2016.1248
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address