http://iet.metastore.ingenta.com
1887

Iterative learning control for non-linear switched discrete-time systems

Iterative learning control for non-linear switched discrete-time systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the iterative learning controller design for a class of non-linear switched discrete-time repetitive systems. First, the definitions of exponential stability and average dwell time in iterative learning control (ILC) systems are introduced, and sufficient conditions for exponential stability of non-linear switched discrete-time ILC systems are established by using the methods of common two-dimensional (2D) Lyapunov function and multiple 2D Lyapunov functions, respectively. Then, the proposed results are used to design the iterative learning controller. Finally, an example is given to illustrate the effectiveness of the proposed results.

References

    1. 1)
      • 1. Li, J., Zhao, J.: ‘H output tracking control for discrete-time switched systems based on switching method’, Circuits Syst. Signal Process., 2013, 32, (5), pp. 24872502.
    2. 2)
      • 2. Wang, M., Zhao, J., Dimirovski, G.M.: ‘Variable structure control method to the output tracking control of cascade non-linear switched systems – brief paper’, IET Control Theory Appl., 2010, 3, (12), pp. 16341640.
    3. 3)
      • 3. Niu, B., Zhao, J.: ‘Output tracking control for a class of switched non-linear systems with partial state constraints’, IET Control Theory Appl., 2013, 7, (4), pp. 623631.
    4. 4)
      • 4. Lee, K., Bhattacharya, R.: ‘Stability analysis of large-scale distributed networked control systems with random communication delays: a switched system approach’, Syst. Control Lett., 2015, 85, pp. 7783.
    5. 5)
      • 5. Li, Y., Ding, L., Liu, G.: ‘Error-tolerant switched robust extended Kalman filter with application to parameter estimation of wheel-soil interaction’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 14481460.
    6. 6)
      • 6. Benzaouia, A., Hmamed, A., Tadeo, F., et al: ‘Stabilisation of discrete 2D time switching systems by state feedback control’, Int. J. Syst. Sci., 2011, 42, (3), pp. 479487.
    7. 7)
      • 7. Liu, C., Gong, Z.: ‘Modelling and optimal control of a time-delayed switched system in fed-batch process’, J. Franklin Inst., 2014, 351, (2), pp. 840856.
    8. 8)
      • 8. Shorten, R., Narendra, K.: ‘On the stability and existence of common Lyapunov functions for stable linear switching systems’. Proc. of the 37th IEEE Conf. on Decision and Control, Tampa, USA, 16–18 December 1998, pp. 37233724.
    9. 9)
      • 9. Branicky, M.S.: ‘Multiple Lyapunov functions and other analysis tools for switched and hybrid systems’, IEEE Trans. Autom. Control, 1998, 43, (4), pp. 186200.
    10. 10)
      • 10. Zhai, G., Hu, B., Yasuda, K.: ‘Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach’, Int. J. Syst. Sci., 2000, 1, (6), pp. 200204.
    11. 11)
      • 11. Niu, B., Zhao, J.: ‘Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems’, Syst. Control Lett., 2013, 62, (10), pp. 963971.
    12. 12)
      • 12. Bu, X., Hou, Z., Yu, F.: ‘Iterative learning control for a class of non-linear switched systems’, IET Control Theory Appl., 2013, 7, (3), pp. 470481.
    13. 13)
      • 13. Bolder, J., Oomen, T.: ‘Rational basis functions in iterative learning control with experimental verification on a motion system’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 722729.
    14. 14)
      • 14. Freeman, C.T.: ‘Upper limb electrical stimulation using input–output linearization and iterative learning control’, IEEE Trans. Control Syst. Technol., 2015, 23, (4), pp. 15461554.
    15. 15)
      • 15. Khong, S.Z., Nesic, D., Krstic, M.: ‘Iterative learning control based on extremum seeking’, Automatica, 2016, 66, pp. 238245.
    16. 16)
      • 16. Santosh, D.: ‘Iterative learning control with time-partitioned update for collaborative output tracking’, Automatica, 2016, 69, pp. 258264.
    17. 17)
      • 17. Meng, D., Jia, Y., Du, J.: ‘Stability of varying two-dimensional Roesser systems and its application to iterative learning control convergence analysis’, IET Control Theory Appl., 2015, 9, (8), pp. 12211228.
    18. 18)
      • 18. Helfrich, B., Lee, C., Bristow, D.: ‘Combined-feedback control and iterative learning control design with application to nanopositioning systems’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 336351.
    19. 19)
      • 19. Lin, M., Yen, C., Tsai, M.: ‘Application of robust iterative learning algorithm in motion control system’, Mechatronics, 2013, 23, (5), pp. 530540.
    20. 20)
      • 20. Butcher, M., Karimi, A.: ‘Linear parameter varying iterative learning control with application to a linear motor system’, IEEE/ASME Trans. Mechatronics, 2010, 15, (3), pp. 412420.
    21. 21)
      • 21. Wang, S., Wang, J., Zhao, J.: ‘Application of PD-type iterative learning control in hydraulically driven 6-DOF parallel platform’, Trans. Inst. Measure. Control, 2013, 35, (5), pp. 683691.
    22. 22)
      • 22. Chen, W., Tomizuka, M.: ‘Dual-stage iterative learning control for MIMO mismatched system with application to robots with joint elasticity’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 13501361.
    23. 23)
      • 23. Heinzinger, D., Fenwick, B., Paden, B., et al: ‘Stability of learning control with disturbances and uncertain initial conditions’, IEEE Trans. Autom. Control, 1992, 37, (1), pp. 110114.
    24. 24)
      • 24. Ouyang, P.R., Petz, B.A., Xi, F.F.: ‘Iterative learning control with switching gain feedback for nonlinear systems’, J. Comput. Nonlinear Dyn., 2009, 6, (1), pp. 875880.
    25. 25)
      • 25. Emelianova, J., Emelianov, M., Pakshin, P.: ‘Stability of a class of nonlinear repetitive processes with application to iterative learning control’. Proc. of the 19th Int. Federation of Automatic Control, Eindhoven, Netherlands, 29 June–1 July 2016, pp. 187192.
    26. 26)
      • 26. Yin, C., Xu, J.X, Hou, Z.: ‘A high-order internal model based iterative learning control scheme for nonlinear systems with time-iteration-varying parameters’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 26652670.
    27. 27)
      • 27. Cao, W., Sun, M.: ‘Iterative learning control for discrete-time switched systems with attenuation factor’, J. Vib. Control, 2014, 63, (2), pp. 257264.
    28. 28)
      • 28. Bu, X., Yu, F., Fu, Z.: ‘Stability analysis of high-order iterative learning control for a class of nonlinear switched systems’, Abstr. Appl. Anal., 2013, 2013, (7), pp. 634656.
    29. 29)
      • 29. Hespanha, J.P., Morse, A.S.: ‘Stability of switched systems with average dwell time’. Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix, USA, 7–10 December 1999, pp. 26552660.
    30. 30)
      • 30. Boyd, S.P.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, USA, 1994).
    31. 31)
      • 31. Yeganefar, N., Yeganefar, N., Ghamgui, M.: ‘Lyapunov theory for 2D nonlinear Roesser models: application to asymptotic and exponential stability’, IEEE Trans. Autom. Control, 2013, 58, (5), pp. 12991304.
    32. 32)
      • 32. Knorn, S., Middleton, R.H.: ‘Asymptotic and exponential stability of nonlinear two-dimensional continuous-discrete Roesser models’, Syst. Control Lett., 2016, 93, pp. 3542.
    33. 33)
      • 33. She, J.H., Fang, M., Ohyama, Y.: ‘Improving disturbance-rejection performance based on an equivalent-input-disturbance approach’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 380389.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1230
Loading

Related content

content/journals/10.1049/iet-cta.2016.1230
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address