http://iet.metastore.ingenta.com
1887

Composite anti-disturbance attitude and vibration control for flexible spacecraft

Composite anti-disturbance attitude and vibration control for flexible spacecraft

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of composite anti-disturbance control for attitude manoeuvre and vibration reduction in the presence of external disturbances. By employing finite-time integral sliding manifold, a novel finite-time integral sliding mode disturbance observer is constructed to estimate the lumped disturbances in finite time, where the lumped disturbances include external disturbances and coupling terms between system states and flexible modal. Based on the estimation values, a composite anti-disturbance controller is proposed via backstepping method. Simulation results are employed to demonstrate the effectiveness of the proposed technique.

References

    1. 1)
      • 1. Gennaro, S.Di: ‘Output stabilization of flexible spacecraft with active vibration suppression’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, pp. 747759.
    2. 2)
      • 2. Lizarralde, F., Wen, T.J.: ‘Attitude control without angular velocity measurement: a passivity approach’, IEEE Trans. Autom. Control, 1996, 41, pp. 468472.
    3. 3)
      • 3. Yang, C.C., Wu, C.J.: ‘Optimal large-angle attitude control of rigid spacecraft by momentum transfer’, IET Control Theory Appl., 2007, 1, pp. 657664.
    4. 4)
      • 4. Park, Y.: ‘Robust and optimal attitude stabilization of spacecraft with external disturbances’, Aerosp. Sci. Technol., 2005, 9, pp. 253259.
    5. 5)
      • 5. Forbes, J.R., Damaren, C.J.: ‘Geometric approach to spacecraft attitude control using magnetic and mechanical actuation’, J. Guid. Control Dyn., 2010, 33, pp. 590595.
    6. 6)
      • 6. Fragopoulos, D., Innocenti, M.: ‘Stability considerations in quaternion attitude control using discontinuous Lyapunov functions’, IEE Proc., Control Theory Appl., 2004, 151, pp. 253258.
    7. 7)
      • 7. Thienel, J., Sanner, R.M.: ‘A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise’, IEEE Trans. Autom. Control, 2003, 48, pp. 20112015.
    8. 8)
      • 8. Ali, I., Radice, G., Kim, J.: ‘Backstepping control design with actuator torque bound for spacecraft attitude maneuver’, J. Guid. Control Dyn., 2010, 33, pp. 254259.
    9. 9)
      • 9. Kang, W.: ‘Nonlinear H control and its applications to rigid spacecraft’, IEEE Trans. Autom. Control, 1995, 40, pp. 12811285.
    10. 10)
      • 10. Morten, D., Olav, E.: ‘State feedback H suboptimal control of a rigid spacecraft’, IEEE Trans. Autom. Control, 1997, 42, pp. 11861191.
    11. 11)
      • 11. Zheng, Q., Wu, F.: ‘Nonlinear H control designs with axisymmetric spacecraft control’, J. Guid. Control Dyn., 2009, 32, pp. 957963.
    12. 12)
      • 12. Zhou, A.M., Kumar, K.D.: ‘Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network’, Acta Astronaut., 2010, 66, pp. 769779.
    13. 13)
      • 13. Lizarralde, F., Wen, T.J.: ‘Adaptive control of uncertain hamiltonian multi-input multi-output systems: with application to spacecraft control’, IEEE Trans. Control Syst. Technol., 2009, 17, pp. 900906.
    14. 14)
      • 14. Singh, S.N., Iyer, A.: ‘Nonlinear decoupling sliding mode control and attitude control of spacecraft’, IEEE Trans. Aerosp. Electron. Syst., 1989, 25, pp. 621633.
    15. 15)
      • 15. Bošković, J.D., Li, S.-M., Mehra, R.K.: ‘Robust adaptive variable structure control of spacecraft under control input saturation’, J. Guid. Control Dyn., 2001, 24, pp. 1422.
    16. 16)
      • 16. Zhu, Z., Xia, Y.Q., Fu, M.Y.: ‘Adaptive sliding mode control for attitude stabilization with actuator saturation’, IEEE Trans. Ind. Electron., 2011, 58, pp. 48984907.
    17. 17)
      • 17. Li, S.H., Ding, S.H.: ‘Global set stabilisation of the spacecraft attitude using finite-time control technique’, Int. J. Control, 2009, 82, pp. 822836.
    18. 18)
      • 18. Li, S.H., Ding, S.H., Li, Q.: ‘Global set stabilization of the spacecraft attitude control problem based on quaternion’, Int. J. Robust Nonlinear Control, 2010, 20, pp. 84105.
    19. 19)
      • 19. Zhang, A., Hu, Q., Li, B.: ‘Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment’, Nonlinear Dyn., 2013, 73, pp. 5371.
    20. 20)
      • 20. Lu, K.F., Xia, Y.Q., Yu, C.M., et al: ‘Finite-time tracking control of rigid spacecraft under actuator saturations and faults’, IEEE Trans. Autom. Sci. Eng., 2016, 13, pp. 368381.
    21. 21)
      • 21. Du, H., Chen, M.Z.Q., Wen, G.: ‘Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft’, J. Guid. Control Dyn., 2016, 39, pp. 944951.
    22. 22)
      • 22. Du, H.B., Li, S.H.: ‘Attitude synchronization for flexible spacecraft with communication delays’, IEEE Trans. Autom. Control, 2016, 61, pp. 36253630.
    23. 23)
      • 23. Liu, Q., Wie, B.: ‘Robust time-optimal control of uncertain flexible spacecraft’, J. Guid. Control Dyn., 1992, 15, pp. 597604.
    24. 24)
      • 24. Kelkar, A.G., Joshi, S.M., Alberts, T.E.: ‘Dissipative controllers for nonlinear multibody flexible space system’, J. Guid. Control Dyn., 1995, 18, pp. 10441052.
    25. 25)
      • 25. Ding, S.H., Zheng, W.X.: ‘Nonsmooth attitude stabilization of a flexible spacecraft’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, pp. 11631181.
    26. 26)
      • 26. Wu, L., Lam, J.: ‘Sliding mode control of switched hybrid systems with time-varying delay’, Int. J. Adapt. Control Signal Process., 2008, 22, pp. 909931.
    27. 27)
      • 27. Liu, Y.H., Niu, Y.G., Lam, J., et al: ‘Sliding mode control for uncertain switched systems with partial actuator faults’, Asian J. Control, 2014, 16, pp. 17791788.
    28. 28)
      • 28. Ding, S.H., Wang, J.D., Zheng, W.X.: ‘Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions’, IEEE Trans. Ind. Electron., 2015, 62, pp. 58995909.
    29. 29)
      • 29. Ding, S.H., Levant, A., Li, S.H.: ‘Simple homogeneous sliding-mode controller’, Automatica, 2016, 67, pp. 2232.
    30. 30)
      • 30. Du, H.B., Yu, X.H., Chen, M.Z.Q., et al: ‘Chattering-free discrete-time sliding mode control’, Automatica, 2016, 68, pp. 8791.
    31. 31)
      • 31. Bang, H., Ha, C.K., Kim, J.H.: ‘Flexible spacecraft attitude maneuver by application of sliding mode control’, Acta Astron., 2005, 57, pp. 841850.
    32. 32)
      • 32. Hu, Q.L., Ma, G.F.: ‘Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver’, Aerosp. Sci. Technol., 2005, 9, pp. 307317.
    33. 33)
      • 33. Hu, Q.L.: ‘Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics’, Nonlinear Dyn., 2008, 52, pp. 227248.
    34. 34)
      • 34. Chen, W.H., Ballance, D.J., Gawthrop, P.J., et al: ‘A nonlinear disturbance observer for robotic manipulators’, IEEE Trans. Ind. Electron., 2000, 47, pp. 932938.
    35. 35)
      • 35. Sun, H.B., Guo, L.: ‘Neural network based DOBC for a class of nonlinear systems with unmatched disturbances’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 27, pp. 482489.
    36. 36)
      • 36. Sun, H.B., Hou, L.L., Zong, G.D.: ‘Continuous finite time control for static var compensator with mismatched disturbances’, Nonlinear Dyn., 2016, 85, pp. 21592169.
    37. 37)
      • 37. Sun, H.B., Li, S.H., Sun, C.Y.: ‘Finite time integral sliding mode control of hypersonic vehicles’, Nonlinear Dyn., 2013, 73, pp. 229244.
    38. 38)
      • 38. Li, Y.K., Sun, H.B., Zong, G.D., et al: ‘DOBC and L2L resilient control for Markovian jump nonlinear systems with multiple disturbances and its application to single robot arm system’, IET Control Theory Appl., 2016, 10, pp. 226233.
    39. 39)
      • 39. Takeshi, F., Somboon, S.: ‘A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer’, IEEE Trans. Ind. Electron., 1992, 39, pp. 8995.
    40. 40)
      • 40. Lu, Y.S.: ‘Sliding mode disturbance observer with switching gain adaptation and its application to optical disk drives’, IEEE Trans. Ind. Electron., 2009, 56, pp. 37433750.
    41. 41)
      • 41. Chen, M., Yu, J.: ‘Disturbance observer-based adaptive sliding mode control for near-space vehicles’, Nonliner Dyn., 2015, 82, pp. 16711682.
    42. 42)
      • 42. Levant, A.: ‘High order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, pp. 924941.
    43. 43)
      • 43. Yu, S.H., Yu, X.H., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, pp. 19571964.
    44. 44)
      • 44. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with applications to finite-time stability’, Math. Control Signals Syst., 2005, 17, pp. 101127.
    45. 45)
      • 45. Hughes, P.C.: ‘Spacecraft attitude dynamics’ (Wiley, New York, 1996).
    46. 46)
      • 46. Wertz, J.R.: ‘Spacecraft attitude determination and control’ (Reidel, Amster dam, 1978).
    47. 47)
      • 47. Egeland, O., Gravdahl, J.T.: ‘Modeling and simulation for automatic control’ (Marine Cybernetics, Trondheim, Norway, 2002).
    48. 48)
      • 48. Kaplan, M.H.: ‘Modern spacecraft dynamics and control’ (John Wiley & Sons, New York, 1976).
    49. 49)
      • 49. Tao, G.: ‘A simple alternative to the Barbǎlat lemma’, IEEE Trans. Autom. Control, 1997, 42, pp. 698.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1225
Loading

Related content

content/journals/10.1049/iet-cta.2016.1225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address