Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust consensus of Lur'e networks with uncertain communications

This study addresses the robust consensus problem of a network of Lur'e systems coordinating over uncertain communication channels. The authors model each communication channel of the network as an ideal transmission system with the unitary transfer function perturbed by a norm-bounded uncertainty, which is particularly susceptible to describe quantisation errors and communication noises. Based on the uncertain relative state information among neighbouring agents, a distributed consensus protocol is proposed and designed in terms of linear matrix inequalities to ensure robust consensus for both undirected connected graphs and leader-follower graphs containing a directed spanning tree.

References

    1. 1)
      • 25. Boyd, S., Ghaoui, L.E., Feron, E., et al: ‘Linear matrix inequalities in systems and control theory’ (SIAM, Philadelphia, PA, 1994).
    2. 2)
      • 23. Wang, J., Elia, N.: ‘Distributed averaging under constraints on information exchange: emergence of lévy flights’, IEEE Trans. Autom. Control, 2012, 57, (10), pp. 24352449.
    3. 3)
      • 15. Zhao, Y., Duan, Z., Wen, G., et al: ‘Robust consensus tracking of multi-agent systems with uncertain Lur'e-type non-linear dynamics’, IET Control Theory Appl., 2013, 7, (9), pp. 12491260.
    4. 4)
      • 24. Mesbahi, M., Egerstedt, M.: ‘Graph theoretic methods in multiagent networks’ (Princeton University Press, 2010).
    5. 5)
      • 9. Yang, T., Meng, Z., Shi, G., et al: ‘Network synchronization with nonlinear dynamics and switching interactions’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 31033108.
    6. 6)
      • 13. Zhang, F., Trentelman, H.L., Scherpen, J.M.A.: ‘Fully distributed robust synchronization of networked Lur'e systems with incremental nonlinearities’, Automatica, 2014, 50, (10), pp. 25152526.
    7. 7)
      • 21. Li, Z., Chen, J.: ‘Robust consensus of linear feedback protocols over uncertain network graphs’, IEEE Trans. Autom. Control, 2017, in press.
    8. 8)
      • 17. Nair, G.N., Fagnani, F., Zampieri, S., et al: ‘Feedback control under data rate constraints: An overview’, Proc. IEEE, 2007, 95, (1), pp. 108137.
    9. 9)
      • 10. Wen, G., Yu, W., Zhao, Y., et al: ‘Pinning synchronisation in fixed and switching directed networks of Lorenz-type nodes’, IET Control Theory Appl., 2013, 7, (10), pp. 13871397.
    10. 10)
      • 2. Antonelli, G.: ‘Interconnected dynamic systems: an overview on distributed control’, IEEE Control Syst. Mag., 2013, 33, (1), pp. 7688.
    11. 11)
      • 22. Fu, M., Xie, L.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 16981711.
    12. 12)
      • 11. Arcak, M., Kokotović, P.: ‘Feasibility conditions for circle criterion designs’, Systems & Control Letters, 2001, 42, (5), pp. 405412.
    13. 13)
      • 3. Li, Z., Chen, M.Z.Q., Ding, Z.: ‘Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs’, Automatica, 2016, 68, pp. 179118.
    14. 14)
      • 12. Yang, T., Meng, Z., Dimarogonas, D.V., et al: ‘Global consensus for discrete-time multi-agent systems with input saturation constraints’, Automatica, 2014, 50, (2), pp. 499506.
    15. 15)
      • 20. Li, T., Wu, F., Zhang, J.F.: ‘Multi-agent consensus with relative-state-dependent measurement noises’, IEEE Trans. Autom. Control, 2014, 59, (9), pp. 24632468.
    16. 16)
      • 8. Zhang, H., Lewis, F.L., Qu, Z.: ‘Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 30263041.
    17. 17)
      • 18. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    18. 18)
      • 19. Zelazo, D., Burger, M.: ‘On the robustness of uncertain consensus networks’, IEEE Trans. Control Netw. Syst., 2015, in press, DOI: 10.1109/TCNS.2015.2485458.
    19. 19)
      • 7. Meng, Z., Dimarogonas, D.V., Johansson, K.H.: ‘Leader-follower coordinated tracking of multiple hetergeneous Lagrange systems using continuous control’, IEEE Trans. Robot., 2014, 30, (3), pp. 739745.
    20. 20)
      • 5. Li, Z., Ding, Z.: ‘‘Distributed adaptive consensus and output tracking of unknown linear systems on directed graphs’, Automatica, 2015, 55, pp. 1218.
    21. 21)
      • 4. Wen, G., Duan, Z., Chen, G., et al: ‘Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies’, IEEE Trans. Circuits Syst. I: Regul. Pap., 2014, 61, (2), pp. 499511.
    22. 22)
      • 14. Li, Z., Duan, Z., Chen, G.: ‘Global synchronised regions of linearly coupled Lur'e systems’, Int. J. Control, 2011, 84, (2), pp. 216227.
    23. 23)
      • 1. Ren, W., Beard, R.W.: ‘Information consensus in multivehicle cooperative control’, IEEE Control Syst. Mag., 2007, 27, (2), pp. 7182.
    24. 24)
      • 16. Liu, S., Li, T., Xie, L.: ‘Distributed consensus for multi-agent systems with communication delays and limited data rate’, SIAM J. Control Optim., 2011, 49, (6), pp. 22392262.
    25. 25)
      • 6. Li, Z., Duan, Z., Ren, W., et al: ‘Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers’, Int. J. Robust Nonlinear Control, 2015, 25, (13), pp. 21012121.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1205
Loading

Related content

content/journals/10.1049/iet-cta.2016.1205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address