http://iet.metastore.ingenta.com
1887

Robust consensus of Lur'e networks with uncertain communications

Robust consensus of Lur'e networks with uncertain communications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the robust consensus problem of a network of Lur'e systems coordinating over uncertain communication channels. The authors model each communication channel of the network as an ideal transmission system with the unitary transfer function perturbed by a norm-bounded uncertainty, which is particularly susceptible to describe quantisation errors and communication noises. Based on the uncertain relative state information among neighbouring agents, a distributed consensus protocol is proposed and designed in terms of linear matrix inequalities to ensure robust consensus for both undirected connected graphs and leader-follower graphs containing a directed spanning tree.

References

    1. 1)
      • 1. Ren, W., Beard, R.W.: ‘Information consensus in multivehicle cooperative control’, IEEE Control Syst. Mag., 2007, 27, (2), pp. 7182.
    2. 2)
      • 2. Antonelli, G.: ‘Interconnected dynamic systems: an overview on distributed control’, IEEE Control Syst. Mag., 2013, 33, (1), pp. 7688.
    3. 3)
      • 3. Li, Z., Chen, M.Z.Q., Ding, Z.: ‘Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs’, Automatica, 2016, 68, pp. 179118.
    4. 4)
      • 4. Wen, G., Duan, Z., Chen, G., et al: ‘Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies’, IEEE Trans. Circuits Syst. I: Regul. Pap., 2014, 61, (2), pp. 499511.
    5. 5)
      • 5. Li, Z., Ding, Z.: ‘‘Distributed adaptive consensus and output tracking of unknown linear systems on directed graphs’, Automatica, 2015, 55, pp. 1218.
    6. 6)
      • 6. Li, Z., Duan, Z., Ren, W., et al: ‘Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers’, Int. J. Robust Nonlinear Control, 2015, 25, (13), pp. 21012121.
    7. 7)
      • 7. Meng, Z., Dimarogonas, D.V., Johansson, K.H.: ‘Leader-follower coordinated tracking of multiple hetergeneous Lagrange systems using continuous control’, IEEE Trans. Robot., 2014, 30, (3), pp. 739745.
    8. 8)
      • 8. Zhang, H., Lewis, F.L., Qu, Z.: ‘Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 30263041.
    9. 9)
      • 9. Yang, T., Meng, Z., Shi, G., et al: ‘Network synchronization with nonlinear dynamics and switching interactions’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 31033108.
    10. 10)
      • 10. Wen, G., Yu, W., Zhao, Y., et al: ‘Pinning synchronisation in fixed and switching directed networks of Lorenz-type nodes’, IET Control Theory Appl., 2013, 7, (10), pp. 13871397.
    11. 11)
      • 11. Arcak, M., Kokotović, P.: ‘Feasibility conditions for circle criterion designs’, Systems & Control Letters, 2001, 42, (5), pp. 405412.
    12. 12)
      • 12. Yang, T., Meng, Z., Dimarogonas, D.V., et al: ‘Global consensus for discrete-time multi-agent systems with input saturation constraints’, Automatica, 2014, 50, (2), pp. 499506.
    13. 13)
      • 13. Zhang, F., Trentelman, H.L., Scherpen, J.M.A.: ‘Fully distributed robust synchronization of networked Lur'e systems with incremental nonlinearities’, Automatica, 2014, 50, (10), pp. 25152526.
    14. 14)
      • 14. Li, Z., Duan, Z., Chen, G.: ‘Global synchronised regions of linearly coupled Lur'e systems’, Int. J. Control, 2011, 84, (2), pp. 216227.
    15. 15)
      • 15. Zhao, Y., Duan, Z., Wen, G., et al: ‘Robust consensus tracking of multi-agent systems with uncertain Lur'e-type non-linear dynamics’, IET Control Theory Appl., 2013, 7, (9), pp. 12491260.
    16. 16)
      • 16. Liu, S., Li, T., Xie, L.: ‘Distributed consensus for multi-agent systems with communication delays and limited data rate’, SIAM J. Control Optim., 2011, 49, (6), pp. 22392262.
    17. 17)
      • 17. Nair, G.N., Fagnani, F., Zampieri, S., et al: ‘Feedback control under data rate constraints: An overview’, Proc. IEEE, 2007, 95, (1), pp. 108137.
    18. 18)
      • 18. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    19. 19)
      • 19. Zelazo, D., Burger, M.: ‘On the robustness of uncertain consensus networks’, IEEE Trans. Control Netw. Syst., 2015, in press, DOI: 10.1109/TCNS.2015.2485458.
    20. 20)
      • 20. Li, T., Wu, F., Zhang, J.F.: ‘Multi-agent consensus with relative-state-dependent measurement noises’, IEEE Trans. Autom. Control, 2014, 59, (9), pp. 24632468.
    21. 21)
      • 21. Li, Z., Chen, J.: ‘Robust consensus of linear feedback protocols over uncertain network graphs’, IEEE Trans. Autom. Control, 2017, in press.
    22. 22)
      • 22. Fu, M., Xie, L.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 16981711.
    23. 23)
      • 23. Wang, J., Elia, N.: ‘Distributed averaging under constraints on information exchange: emergence of lévy flights’, IEEE Trans. Autom. Control, 2012, 57, (10), pp. 24352449.
    24. 24)
      • 24. Mesbahi, M., Egerstedt, M.: ‘Graph theoretic methods in multiagent networks’ (Princeton University Press, 2010).
    25. 25)
      • 25. Boyd, S., Ghaoui, L.E., Feron, E., et al: ‘Linear matrix inequalities in systems and control theory’ (SIAM, Philadelphia, PA, 1994).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1205
Loading

Related content

content/journals/10.1049/iet-cta.2016.1205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address